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Abstract

Earth is experiencing multiple global changes that will, together, determine the fate

of many species. Yet, how biological communities respond to concurrent stressors

at local-to-regional scales remains largely unknown. In particular, understanding how

local habitat conversion interacts with regional climate change to shape patterns in

b-diversity—differences among sites in their species compositions—is critical to

forecast communities in the Anthropocene. Here, we study patterns in bird b-diver-

sity across land-use and precipitation gradients in Costa Rica. We mapped forest

cover, modeled regional precipitation, and collected data on bird community compo-

sition, vegetation structure, and tree diversity across 120 sites on 20 farms to

answer three questions. First, do bird communities respond more strongly to

changes in land use or climate in northwest Costa Rica? Second, does habitat con-

version eliminate b-diversity across climate gradients? Third, does regional climate

control how communities respond to habitat conversion and, if so, how? After cor-

recting for imperfect detection, we found that local land-use determined community

shifts along the climate gradient. In forests, bird communities were distinct between

sites that differed in vegetation structure or precipitation. In agriculture, however,

vegetation structure was more uniform, contributing to 7%–11% less bird turnover

than in forests. In addition, bird responses to agriculture and climate were linked:

agricultural communities across the precipitation gradient shared more species with

dry than wet forest communities. These findings suggest that habitat conversion

and anticipated climate drying will act together to exacerbate biotic homogeniza-

tion.
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1 | INTRODUCTION

The fate of Earth’s wildlife will depend on species’ collective

responses to multiple global changes (Brook, Sodhi, & Bradshaw,

2008), yet most research focuses on how single pressures affect

ecosystems. Moreover, interactive impacts of global change drivers

are usually only considered locally (Mantyka-Pringle, Martin, &

Rhodes, 2012). Predicting biodiversity impacts at regional scales (c-

diversity) hinges on understanding how species composition varies

across space (b-diversity) (Whittaker, 1960). b-diversity, however, is

rarely considered in conservation planning, despite increasing evi-

dence that biodiversity loss accumulates at larger scales (Socolar,
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Gilroy, Kunin, & Edwards, 2016). For example, one 29-year study

revealed that climate change is homogenizing North Atlantic marine

fish communities at a regional scale, but no temporal trends in local

species richness were observed (Magurran, Dornelas, Moyes, Gotelli,

& McGill, 2015). Indeed, biotic homogenization, and not local species

loss, is increasingly recognized as a hallmark of the Anthropocene

(McKinney & Lockwood, 1999; Socolar et al., 2016).

Anthropogenic disturbances affect b-diversity through multiple

processes. First, when disturbances decrease species richness, b-

diversity can increase because the probability that sites do not share

species increases when fewer species occupy each site (Chase, Kraft,

Smith, Vellend, & Inouye, 2011). Second, disturbances can impose

similar ecological filters over vast areas (Keddy, 1992), thereby

homogenizing communities (Karp et al., 2012), or create environmen-

tal heterogeneity, thereby diversifying communities (Hawkins, Mykr€a,

Oksanen, & Vander Laan, 2015). These processes mediate the b-

diversity impacts of two primary threats to terrestrial communities—

habitat conversion and climate change. Habitat conversion often

decreases b-diversity (Gossner et al., 2016; Karp et al., 2012; Solar

et al., 2015) because it imposes ecological filters (P€uttker, de Arruda,

Prado, & Pardini, 2015) and homogenizes habitat structure across

environmental gradients (Karp et al., 2012). However, the low a-

diversity that follows habitat conversion can increase b-diversity

through sampling effects (Karp et al., 2012). Indeed, a recent synthe-

sis across 14,519 sites did not find anthropogenic habitats to consis-

tently decrease b-diversity (Newbold et al., 2016). Although less

studied than habitat conversion, climate change can also decrease b-

diversity by favoring widely distributed species, often homogenizing

environmental gradients, and because even if new species spread,

colonization is not instantaneous (Britton, Beale, Towers, & Hewison,

2009; Davey, Devictor, Jonz�en, Lindstr€om, & Smith, 2013; Magurran

et al., 2015).

While habitat conversion and climate change may depress b-

diversity in isolation (Socolar et al., 2016), little work has evaluated

interactions between them (but see Holting, Bovolo, & Ernst, 2016).

Individuals and populations regularly exhibit complex and non-addi-

tive responses to multiple stressors. For example, experiments

(Mora, Metzger, Rollo, & Myers, 2009), theory (Travis, 2003), and

observations (Mantyka-Pringle et al., 2012) suggest that climate

change and habitat conversion synergistically depress population

sizes. Climate change and habitat conversion may also interactively

determine community structure. Indeed, analyses of species’ ranges

suggest that species’ responses to climate and land-use are not inde-

pendent. Hot- (Barnagaud, Barbaro, Hampe, Jiguet, & Archaux,

2013; Clavero, Villero, & Brotons, 2011) and dry-associated (Frishk-

off et al., 2016) species are more likely to occupy agriculture than

forests, meaning climate change and habitat conversion may shift

community composition in similar ways. But the degree to which

broad (species-range level) patterns predict local community shifts

remains unknown.

Here, we explore the combined impacts of climate drying and

habitat conversion on birds in northwest Costa Rica, characterizing

community change at 120 sites on 20 farms along steep

independent land-use and precipitation gradients in a “space-for-

time” substitution approach. Our focus is on precipitation because

drying is predicted for northwest Costa Rica (Rauscher, Giorgi,

Diffenbaugh, & Seth, 2008) and prior work indicates that precipi-

tation (not temperature) may drive bird responses to habitat con-

version in Costa Rica (Frishkoff et al., 2016). We had three

predictions. First, we hypothesized that species would sort along

precipitation and land-use gradients (Keil et al., 2012); however,

turnover would be highest between land uses due to extreme dif-

ferences in vegetation structure. Second, we predicted that com-

munities exhibit more turnover in forest than agriculture because

forests are heterogeneous, while agriculture is often structurally

uniform, irrespective of location or regional climate (Flynn et al.,

2009; Karp et al., 2012). Third, we predicted that agricultural veg-

etation is structurally similar to the shrubbier vegetation present

in dry forests (Frishkoff et al., 2016); thus, agricultural communi-

ties should more closely resemble communities in drier than

wetter habitats.

2 | MATERIALS AND METHODS

2.1 | Study region and sites

To explore how land use and climate drying affect tropical bird

communities, we hand-classified tree cover from aerial imagery,

modeled regional precipitation from weather station data (N = 29

stations), and surveyed bird and plant communities along orthogo-

nal land-use and precipitation gradients (1,500–3,000 mm) in

northwest Costa Rica (the Guanacaste province; Figure 1). This

region’s unique history has transformed it into a mosaic of pro-

tected areas, private forests, and agriculture. In the 1950s, beef

production in Guanacaste rapidly increased, causing forest clearing

(Calvo-Alvarado, McLennan, Sanchez-Azofeifa, & Garvin, 2009).

Thirty years later, the industry collapsed, and forests regenerated,

increasing in cover from 24% to 47% by 2005 (Calvo-Alvarado

et al., 2009).

Guanacaste’s climate is highly seasonal, with a severe dry season

from December to April and a short, mid-rainy-season drought in

July and August. It also has two rainy seasons, with the most intense

rains occurring in October and November. Total annual precipitation

varies from ~1,500 mm to ~3,000 mm over ~75 km, driving a shift

from coastal wet forests to inland dry forests (Fig. S1). Yet Gua-

nacaste’s climate is changing. For several years, Guanacaste has been

in severe drought, and climate projections suggest the region may

experience up to 25% declines in summer precipitation over the next

century (Rauscher et al., 2008).

We selected a network of 20 forest-adjoining farms across the

regions’ precipitation gradient including: pastures (N = 12), rice

(N = 6), sugarcane (N = 1), and Taiwan grass (a forage crop, N = 1)

fields. Agricultural types were chosen to be representative of the

broad study region. On each farm, we identified six sites to conduct

bird point counts (N = 120 sites), half in agriculture and half in adja-

cent forests. Sites were chosen so that local land use (forest vs.
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agriculture) varied independently from landscape context (surround-

ing forest amount), with census points in forest interiors, forest

edges, small forest fragments, agricultural field centers, fields border-

ing forest, and fields surrounded by forest. To measure surrounding

forest cover, we hand classified all tree cover within 1.5 km of point

count locations using high-resolution, recent (2013–2016), cloud-free

Google Earth images. The resulting tree cover map was verified by

using ground-truthed data from 480 points where we conducted

vegetation surveys.

Farms varied strongly in total annual precipitation, but not in ele-

vation or mean annual temperature: all farms were below 300 m

(mean: 110 m; range: 0–300 m), and experienced mean annual tem-

peratures of 25–27°C (mean: 26°C). Therefore, in this unique study

system, effects of precipitation on bird communities can be isolated

from effects due to temperature or elevation. Temperature data

were acquired from WorldClim (www.worldclim.org/). Because vali-

dated precipitation maps were not available, we modeled spatial

variation from weather station data collected between 1921 and

2015 and obtained from Costa Rica’s Instituto Meteorol�ogico Nacio-

nal (https://www.imn.ac.cr/; N = 8), the Organization for Tropical

Studies (http://www.ots.ac.cr/meteoro; N = 1), KNMI Climate

Explorer (https://climexp.knmi.nl/; N = 19), and one of our focal

farms (http://tiopelon.cr/; N = 1). Data gaps were filled by averaging

two previous and subsequent days (missing days) or by averaging

the same month in two previous and subsequent years (missing

months). Years with more than 3 months of missing data were omit-

ted. To model regional precipitation, we used a general additive

mixed model (GAMM) with a spatial thin-plate spline and “Year” as a

random intercept. Because offshore winds drive seasonal precipita-

tion dynamics (Romero-Centeno, Zavala-Hidalgo, & Raga, 2007), we

also included distance from the coast to each census location along

the predominant offshore wind direction as a covariate. A wind

direction of 30° North of West was chosen after consulting MERRA

re-analysis data (http://globalwindatlas.com/). Our rainfall model pre-

dicted that the study sites spanned a range of 1,500–2,900 mm in

annual precipitation.

2.2 | Bird and vegetation surveys

In May–July of 2016, we surveyed all birds seen or heard in 20 min,

50 m fixed radius point counts. The same expert observer conducted

all counts (J. Zook). Half of the point counts (N = 60) were repeat-

edly sampled (39) within a 1-week period and the other half were

surveyed once so as to increase spatial replication while still allowing

half the sites to be repeat sampled to estimate detection probabili-

ties (see below). One farm (6 sites) was surveyed each day, begin-

ning at sunrise and continuing for ~5 hr. Along with species identity,

we also recorded the following abundance and detection covariates:

time of day, date, ambient noise, number of people within the count

radius, wind speed (using a handheld anemometer), and distance to

nearest stream or river.

At each point count location, we also surveyed vegetation struc-

ture in four 5 m radius subplots, one at the point count center and

the others 15 m N, 20 m SE, and 25 m SW of plot center. First, we

identified, marked, measured the diameter at breast height (DBH),

and noted liana presence on all trees with >5 cm DBHs. Second, for

three canopy trees (or the next highest vegetation strata) at each

subplot, we measured vegetation height (with a handheld hypsome-

ter) and noted the presence of epiphytes or vines. Third, in two

1 m2 quadrats at each subplot, we recorded the number of woody

stems and the percent coverage of shrubs and herbaceous vegeta-

tion. Fourth, we measured understory density by estimating (from

2 m away) the percent cover of meter stick, held 1.5 m from the

ground. Finally, we analyzed fish-eye photographs at the center of

each subplot with the software program “Gap Light Analyzer” to

quantify canopy cover.

2.3 | Binomial mixture model

We implemented a binomial mixture model to estimate species

abundances at each site, while accounting for well-known variation

in detection probability across species and sites (K�ery & Schaub,

2012; Royle & Dorazio, 2008). Specifically, the number of observed

F IGURE 1 Map of study sites and
precipitation gradient. (a) shows modeled
mean annual precipitation across the study
region, as well as study site locations
(black dots). Sites were arrayed across a
precipitation gradient. (b) shows point
count locations at an example farm. At
each site, three point counts were placed
in agriculture (red icons) and three in
forest (green icons). Locations were chosen
so that local land use and landscape
context (proportion of surrounding tree
cover; green shading) were largely
independent
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individuals (Yi;j;k) of each species (i) at each site (j) during each visit

(k) was assumed to result from detection and abundance processes

such that:

Yi;j;k �Binomial ðNi;j;Pi;j;kÞ

Where N is the true number of individuals, and P is the detection

probability of an individual. The detection process was modeled as:

logitðPi;j;kÞ ¼ a0LU½j� þ a1 � timej;k þ a2 � noisej;k þ a3 � pplj;k
þ a4 �windj;k þ h1i � datej;k þ d0i þ d1i;j;k

Where “LU” indicated whether a site was forested or not, “time”

expressed time of day, “noise” was a dummy variable indicating

whether load noises occurred during the count that could diminish

sound-based detection of birds (e.g., farm equipment, cicadas, etc.),

“ppl” was the (log + 1) number of farm workers within the point

count radius, “wind” was the wind speed at the beginning of the sur-

vey, and “date” was the Julian date that a survey took place.

The true number of individuals (N) was assumed to come from a

Poisson distribution, based on the expected number of individuals

(Λ), which was modeled according to:

logðKi;jÞ ¼ b0i þ b1i � localj þ b2i � precipj þ b3i � landscapej;s
þ b4i � localj � precipj þ b5i � localj � landscapej;s
þ b6i � precipj � landscapej;s þ b7i � riverj þ c0i;j þ c1i;farm½j�

Above “local” describes the amount of forest cover within the

50 m radius point count, “precip” is the mean annual precipitation of

the site, “landscape” is the landscape-level tree cover at a biologically

relevant spatial scale (s) estimated from the data (see below), and

“river” is the distance to the nearest river or stream.

Parameters in the a family were simple fixed effect terms. All

parameters in the b and h families were estimated for each species,

with species terms drawn from a normal distribution of mean (l) and

variance (r2) estimated from the data. c and d terms were random

intercepts (variance estimated from data around a mean of 0)

designed to incorporate additional variation for each species, site, or

replicate that could not be explained by other fixed and random

effects.

Many taxa, including birds, respond not only to local site condi-

tions but also to the surrounding landscape, necessitating examina-

tion of abundance responses at multiple spatial scales (Jackson &

Fahrig, 2015). We integrated over uncertainty regarding the “correct”

spatial scale directly within the binomial mixture model (Frishkoff,

Mahler, & Fortin, 2017). Variable landscapej,s was built from the 5 m

resolution, hand-classified tree cover map. It consisted of a site-by-

scale matrix filled with (centered and scaled) proportions of each site

covered by trees within 60–1.5 km radii (after removing the core

50 m radius, as this is considered to be the “local” land use). During

the fitting process, the model evaluated alternative values of s,

thereby gauging how well the full set of alternative spatial scales

described the data. This resulted in a posterior distribution for values

of s, which fully integrated over the uncertainly regarding the proper

spatial scale, and which further can be used to select the most

appropriate spatial scale (posterior mode) or an interval of spatial

scales that well describe the data (credible interval).

All terms were assumed to be independent of other terms, with

the exception of b1 and b2. Because we hypothesized that a species

response to climate might be correlated with how it responds to

local land-use change, we allowed the degree of correlation in these

terms to be estimated from the data. Specifically:

b1i

b2i

� �
�Norm

lb1
lb2

� �
;

r2
b1 qrb1rb2

qrb1rb2 r2
b2

" # !

Where q represents the degree of correlation between a species’

land-use and precipitation response, and l and r terms are the

means and SD estimated from the data.

We validated that our model was able to adequately describe

the data using posterior predictive checks (Gelman & Hill, 2007;

K�ery & Schaub, 2012). Briefly, along each iteration of the MCMC,

we simulated a dataset under the parameter estimates in the model.

We then compared the discrepancy between both the real data and

the expectation based on parameter estimates, as well as the simu-

lated data and the expectation based on parameter estimates using a

chi-square discrepancy statistic. These statistics were used to calcu-

late a Bayesian p-value, describing whether the model was unlikely

to generate the real data. Values >.05 and <.95 are taken to indicate

adequate model fit (K�ery & Schaub, 2012). Standard posterior pre-

dictive checks may be overly optimistic with regards to the ability of

the model to describe the data, with Bayesian p-values biased away

from the tails (Marshall & Spiegelhalter, 2003). These predictive

checks should therefore be viewed primarily to indicate that there is

nothing extremely incorrect about the model, although more subtle

misspecifications may still exist.

To quantify b-diversity we extracted Ni,j along each iteration of

the posterior (hereafter referred to as “posterior communities”). Each

posterior community represents a possible number of true individu-

als that conform to the number of observed individuals at each site,

given the detection probabilities estimated as a function of the spe-

cies, sites, and visits during which a survey was conducted.

2.4 | Quantifying pairwise dissimilarity

Because many b-diversity metrics exist, each describing a distinct

aspect of community turnover or variation, we used multiple strate-

gies to quantify and analyze bird b-diversity (Anderson et al., 2011).

First, for each of the 2,000 posterior communities, we calculated dis-

similarity in community composition between each pair of sites as

proportions of unshared species (Sorenson Index) and unshared indi-

viduals (Bray–Curtis Index). Such total dissimilarity values, however,

confound two patterns (species turnover and nestedness) that result

from distinct processes (species replacement and loss) (Baselga,

2010). Thus, we partitioned total dissimilarities into turnover and

nestedness components (Baselga, 2010, 2013a).

To ensure our results were robust, we also implemented an alter-

native approach of using null models to remove effects of species
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loss on b-diversity (Chase et al., 2011). Our method followed Poni-

sio, M’Gonigle, & Kremen (2016). First, for each posterior commu-

nity, we simulated 1,000 null communities, constraining the total

number of individuals and species observed at each site. To do so,

we randomized a binary matrix with a quasi-swap algorithm that

maintained column and row sums. Next, we added individuals until

we reached the total number of birds present at each site, sampling

individuals with probabilities reflecting species’ relative abundances

across all sites. Second, we calculated Sorenson and Bray–Curtis dis-

similarity for each pair of sites in each null community. Finally, for

each pair of sites, we quantified “a-diversity corrected ranks,” as the

proportion of null communities with dissimilarities less than that of

the observed community.

2.5 | b-diversity in forests and agriculture

We visualized community turnover with Non-Metric Multidimen-

sional Scaling (NMDS). Plots were produced from averaging total

pairwise dissimilarity, the turnover component of dissimilarity, and a-

diversity-corrected ranks across 2,000 posterior communities. In

each case, we used Permutational Multiple Analysis of Variance

(PERMANOVA), with “farm” as a blocking factor, to statistically eval-

uate the relative roles of land use (forest vs. agriculture) and annual

precipitation in determining species turnover.

We then assessed b-diversity in forests versus agriculture using

two methods. First, we compared multivariate dispersion between

land-use types. Analyses were conducted on Sorenson and Bray–

Curtis dissimilarity indices, their turnover and nestedness compo-

nents, and a-diversity-corrected ranks. Specifically, for each dissimi-

larity index and posterior community, we calculated the multivariate

distance from each site to the centroid of all sites in the same land-

use class (Anderson, Ellingsen, & McArdle, 2006). The effect of

land-use class on mean centroid distance was analyzed with Linear

Mixed Models (LMMs), weighted by the posterior variance of cen-

troid distance estimates (Tingley & Beissinger, 2013). “Farm” was

included as a random intercept, and significance was assessed

through comparing models with and without the land-use predictor

via likelihood ratio tests evaluated against a chi-square distribution

(Zuur, Ieno, Walker, Saveliev, & Smith, 2009). Pairwise nestedness

metrics were log-transformed to ensure normality and homoscedas-

ticity of residuals. To ensure that spatial autocorrelation within and

between farms did not influence our results, we repeated the bino-

mial mixture modeling, and all post-hoc b-diversity analyses, after

including an exponential decay spatial covariance structure with a

nugget and excluding the farm-level random effect. Residual spatial

autocorrelation was minor, and explicitly modeling it did not change

any of our results. We therefore chose to present analyses without

explicit spatial covariance structure, other than the random effect

of farm.

Second, we compared multi-site Sorenson and Bray–Curtis dis-

similarity in forest versus agricultural sites. To do so, we examined

the difference between either the total, nestedness, or turnover

components of multi-site dissimilarity in agricultural sites from the

same measures in forest sites for each posterior community (Baselga,

2013b, 2016). We tested significance by determining whether 95%

Bayesian Credible Intervals of multi-site dissimilarity differences

encompassed 0.

2.6 | b-diversity drivers

We tested whether geographic distance, precipitation differences,

and/or turnover in vegetation structure explained variation in bird

communities. First, we aggregated vegetation data across subplots.

Then, we compared nested LMMs with likelihood ratio tests to

determine how precipitation affected vegetation structure variables

in forest sites and whether relationships between vegetation struc-

ture and precipitation differed in forest versus agriculture sites.

Next, we calculated Gower dissimilarity between sites, equally

weighing: (1) canopy cover, (2) tree height, (3) ground cover com-

position (% shrubs, % herbaceous plants, and number of woody

stems), (4) understory density, (5) parasitic plant prevalence (num-

ber of trees with lianas, proportion of trees with epiphytes or

vines), (6) number of tree stems, (7) average stem DBH, and (8) tree

species richness. To compare variation in vegetation structure

between forest and agriculture, we used Gower dissimilarities to

calculate distances from each site to the centroid of its land-use

class, and implemented LMMs to evaluate effects of land use on

centroid distance (as above). We then used Mantel tests to exam-

ine associations among pairwise dissimilarities in vegetation struc-

ture, precipitation, and geographic distance in agriculture and

forest.

Next, we used Mantel tests to examine the correlation between

pairwise community dissimilarity and dissimilarity in vegetation

structure, differences in annual precipitation, and geographic dis-

tance between pairs of forest sites. First, for each metric of com-

munity dissimilarity, we calculated the median community

dissimilarity between each pair of sites across the 2,000 posterior

communities. After separating forest and agricultural sites, we

implemented Mantel tests to examine associations between com-

munity dissimilarity and environmental variables in forests and in

agriculture. For vegetation and precipitation analyses, we also

implemented Partial Mantel tests that included a geographic dis-

tance covariate to ensure that geographic distance alone could not

explain our findings.

We then used a randomization procedure to assess the relative

strength of community turnover in forest versus agricultural sites. To

do so, we first created a matrix (hereafter termed the land-use com-

parison matrix) that codified the identity of each pair of sites as: (1)

both sites in agriculture, (2) both sites in forest, or (3) one site in for-

est and one in agriculture. Second, for each environmental variable

(vegetation structure, precipitation, and geographic distance), we

constructed a simple linear model that had bird community dissimi-

larity as the response variable and the focal environmental variable,

land-use comparison type, and their interaction as predictors. We

parameterized these models such that the interaction term corre-

sponded to the difference in the effect of each environmental
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variable on bird community dissimilarity between forest and agricul-

tural sites. Specifically, linear models took the form:

ComDist[i] ¼ b0;comparison½i� þ b1;comparison½i� � EnvDis[i]

Where “ComDist” is the community dissimilarity between a pair

of sites (i), “EnvDis” is the environmental distance between sites, and

“comparison” is the vectorized comparison matrix indicating pairwise

site identity. Finally, we used permutation procedures to build null

distributions for the difference between slope terms in agricultural

comparisons versus forest comparisons (i.e., difference between b1,

agri-agri and b1,for-for). To confirm the robustness of our findings we

used two procedures: (1) we permuted only the comparison matrix

associated with b1, so as to test the specific hypothesis that slopes

differed, while holding comparison intercepts constant and (2) we

calculated a null distribution by permuting the bird community dis-

similarity matrix. Both approaches yielded qualitatively identical

results, and we chose to present the more conservative test (per-

muting the land-use identity matrix).

2.7 | Land-use effects along climate gradients

To assess interactive impacts of climate drying and habitat conver-

sion, we compared forest and agricultural communities along the

precipitation gradient. First, to assess overall differences in forest

communities to agriculture, we calculated the distance from each

forest site to the centroid of all agricultural sites for each posterior

community. Second, to examine community shifts between forest

and agriculture at the individual farm level, we calculated the dis-

tance from each site to the centroid of the three sites in opposite

land use within the same farm. Distances were calculated from

Sorenson and Bray–Curtis dissimilarities, their turnover components,

and a-diversity-corrected ranks. To test whether the average agricul-

tural community was more similar to forest communities in wetter or

drier regions, we used LMMs to quantify effects of forest-site pre-

cipitation on the average distance to the agricultural centroid(s). To

test whether precipitation affected the difference between agricul-

tural and forest communities, we used LMMs to assess how the pre-

cipitation a farm experiences affects the dissimilarity between its

forest and agricultural bird communities. In both cases, LMMs were

weighted by the posterior variance of centroid distance estimates

(Tingley & Beissinger, 2013), and “Farm” was included as a random

intercept.

3 | RESULTS

Across all bird surveys, we detected 3,813 individuals across 126

species (Forests: 2,447 individuals, 100 species; Agriculture: 1,366

individuals, 91 species). Our binomial mixture model indicated that

detection was not equal across sites, species, or replicate site visits.

Birds were easier to detect in forest (mean across species of individ-

ual detection probability 22.6% [BCI: 18.8%–26.8%]) than in agricul-

ture (8.8% [BCI: 6.5%–11.5%]). Detection was also easier in quieter

environments (Noise effect term (logit scale), �0.725 [�1.047,

�0.387]) and earlier in the morning (Time effect, �0.284 [�0.392,

�0.184]). After accounting for detection, we inferred that an average

of 99 individuals [95% BCI: 74–142] and 32 species [30–36] used

each 50 m radius forest point count, compared to 185 individuals

[113–331] and 33 species [29–38] in agriculture. Posterior predictive

checks indicated that models adequately described the data (Baye-

sian p = .46).

3.1 | b-diversity along environmental gradients

Analyses of every b-diversity metric confirmed that bird communities

exhibit turnover along the land-use and precipitation gradients (Fig-

ures 2 and S2). This trend was not driven by waterbirds, as they

were no more abundant in wetter areas near the coast than in

inland, drier areas (Fig. S3). Models indicated, however, that land-use

explained more variation in bird community turnover than precipita-

tion (Table S1).

3.2 | b-diversity within habitat types

Comparisons of the amount of b-diversity present within forest

versus agriculture were metric dependent. We predicted that

F IGURE 2 Non-metric multidimensional
scaling (NMDS) plots depicting effects of
land use and precipitation on bird
communities. The distance between sites
(points) represents distinctness in
community composition, calculated as
turnover in species (Sorenson, a) or
individuals (Bray–Curtis, b). Axes represent
ordination distances. Triangles are sites in
agriculture, circles are in forest, and points
are colored by precipitation. Plots show
significant differences in bird composition
between forests and agriculture and along
the precipitation gradient (Table S1)
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forest sites would have greater b-diversity (as measured by dis-

tances to multivariate habitat centroid) than agricultural sites. Yet

no differences in total b-diversity were observed within forest or

agriculture when distances to group centroids were measured

with total dissimilarity values (Figure 3a,b; Table S2). Partitioning

total b-diversity, however, showed that the turnover component

of b-diversity was greater in forest (p < .01), while the nestedness

component was higher in agriculture (p < .01; Figure 3c–f;

Table S2). The same trend was observed when multi-site dissimi-

larity metrics were analyzed rather than centroid distances

(Fig. S4). When null models were used to factor out effects of a-

diversity, b-diversity was higher in forests than agriculture for

incidence-based but not abundance-based dissimilarity (Fig. S5;

Table S2).

3.3 | Drivers of b-diversity across the precipitation
gradient

Agriculture had more homogenous vegetation structure than forest,

which may be one explanation for its lower turnover. Indeed, forest

sites were on average three times more differentiated from one

another in terms of vegetation structure than were agricultural sites

(v2=71.6, p < .001; Figs S6 and S7). Results were generally consis-

tent when vegetation structure variables were log transformed,

although agricultural plots with at least one tree were more strongly

differentiated from those with no trees (Fig. S6). Moreover, in agri-

culture, vegetation structure exhibited neither spatial patterns

(Fig. S8; Mantel: r = .01, p = .31) nor changes along the precipitation

gradient (Fig. S8; Mantel: r = �.04, p = .82). But in forests, more dis-

tinct vegetation structure was observed between sites that were

more distant (Fig. S8; r = .1, p = .004) and had more divergent pre-

cipitation regimes (Fig. S8; r = .1, p = .01). Specifically, compared to

wetter sites, drier forests had marginally lower canopy cover and sig-

nificantly shorter canopies, more herbaceous plant coverage, fewer

woody stems, fewer trees with vines and epiphytes, and smaller tree

diameters at breast height (Table S3). As a result, vegetation struc-

ture in agriculture was significantly more similar to vegetation struc-

ture in drier forest sites than wetter forest sites (v2=4.7, p = .03).

Forest bird communities tracked changes in vegetation structure,

precipitation, and geographic distance. Specifically, all measures of

incidence-based dissimilarity of bird communities increased between

forest sites that were more distant and differed more strongly in

vegetation structure and precipitation (Figure 4: Table S4). Associa-

tions between incidence-based dissimilarity and vegetation/precipita-

tion dissimilarity were also significant after accounting for

covariation with geographic distance (Table S4). In agriculture, how-

ever, relationships between incidence-based dissimilarity and vegeta-

tion structure, precipitation, and geographic distance were

significantly weaker than in forest (Figure 4). Agricultural bird com-

munities never exhibited significantly increasing turnover with vege-

tation structure (Figure 4), and also did not change along the

precipitation gradient after partialing out geographic distance

(Table S4). When abundance-based dissimilarity (Bray–Curtis) was

used in each analysis, trends were qualitatively similar, but less pro-

nounced and in some cases not significant (Table S4). Also, permuta-

tion tests yielded no support that abundance-based community

turnover along vegetation, precipitation, or distance gradients was

stronger in forest than in agriculture (Table S5).

3.4 | Interactions between climate drying and
habitat conversion

We observed a strong, significant correlation between species’ abun-

dance responses to habitat conversion and climate drying (Figure 5).

That is, species that thrived in forests tended to be more abundant

in wet regions, while species that benefited from agriculture tended

to reach maximal abundances in drier regions. As a result, the aver-

age agricultural community was more similar to forest communities

F IGURE 3 b-diversity comparisons between forest and
agriculture. Plots depict distances to group centroids (a measure of
b-diversity) in agricultural and forest point count locations (dots). b-
diversity is calculated as unshared species (left panels) and unshared
individuals (right panels). No differences in total dissimilarity are
observed between forest and agriculture (a and b). However,
partitioning b-diversity into the components generated from species
replacement (turnover) versus species loss (nestedness) reveals
significantly more turnover in forest (c and d) and more nestedness
in agriculture (e and f). Black dots are mean values; lines are 95%
confidence intervals. Asterisks denote significance (p < .05) under
likelihood ratio tests, comparing nested generalized linear mixed
models (GLMMs)
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in drier sites (significant in six of all six analyses, regardless of dissim-

ilarity metric, whether b-diversity was partitioned, or if null models

were used to account for a-diversity; Table S4; Figures 6 and S9).

Similarly, increasing precipitation tended to accentuate differences

between forest and agricultural communities (Table S5; Figures 6

and S10). Specifically, bird communities located in forest and

F IGURE 4 Patterns in bird community
turnover along gradients of vegetation
structure, precipitation, and geographic
distance. Differences in vegetation
structure (Gower dissimilarity; a),
precipitation (mm rainfall; c), and distance
(km; e) between pairs of forest (green dots)
and agricultural count locations (orange
dots) are graphed against difference in
community composition (the turnover
component of Sorenson dissimilarity). Solid
(forest) and dotted (agriculture) lines depict
linear model relationships. Solid black lines
in (b), (d), and (f) are observed interactions
between local land-use (forest vs.
agriculture) and each environmental
gradient (equivalent to the difference in
slopes of solid vs. dotted lines in left
panels). Gray histograms are density
diagrams of interaction values across 1,000
community randomizations (see methods).
Plots show that communities exhibited
stronger turnover along vegetation (b),
precipitation (d), and distance (f) gradients
in forest sites than in agricultural sites

F IGURE 5 Correlated responses to habitat conversion and climate drying among Neotropical birds. (a) depicts responses of each species
(dots) to agriculture and drying, estimated directly from binomial mixture models. Numbers represent number of species predicted to increase
or decrease in abundance in response to each stressor. Species that responded positively to agriculture also responded positively to drying
(e.g., the pictured Red-winged Blackbird, Agelaius phoeniceus, identified with a red line) and species that were sensitive to habitat conversion
were also sensitive to drying (e.g., Barred Antshrike, Thamnophilus doliatus). (b) depicts the posterior distribution of the estimated correlation
(q from the multivariate normal distribution) between species responses to land-use and climate gradients (gray dots are 2,000 posterior
samples). Black dot is the correlation; line is the 95% Bayesian Credible Interval
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agricultural sites on the same farm were most distinct in wetter

regions but became more similar in drier regions. This trend’s direc-

tion was the same regardless of dissimilarity metric, partitioning

strategy, or null-model implementation, and was significant in four of

six analyses.

4 | DISCUSSION

Aligning with our first prediction, we found that bird community

composition changes along precipitation and land-use gradients.

While species sorting along climatic and habitat gradients is well

documented (Elsen, Tingley, Kalyanaraman, Ramesh, & Wilcove,

2017; Mendenhall, Shields-Estrada, Krishnaswami, & Daily, 2016),

few studies have assessed community turnover along both gradients

simultaneously (Keil et al., 2012). Our work highlights the relatively

large impact that land-use change generates compared to regional

climatic gradients in northwest Costa Rica (Table S1). However, land

use influenced alternative components of b-diversity differently:

while total b-diversity did not differ, the turnover component of

b-diversity was higher in forests while the nestedness component

was higher in agriculture. Because species richness was more vari-

able among agricultural than forest sites (Fig. S11), higher nestedness

in agriculture suggests that either consistent loss of particular spe-

cies, and/or sampling effects that accompany random species loss,

play a stronger role in assembling agricultural than forest communi-

ties (Karp et al., 2012).

Similarly, several explanations exist for why forest had higher

turnover rates across the climate gradient. One is that agriculture is

a strong filter, favoring a characteristic set of closely related species

with a limited suite of functional traits (Frishkoff et al., 2014;

G�amez-Viru�es et al., 2015). However, we also found evidence for

our second prediction that more heterogeneous vegetation structure

in forests contributed to higher bird community turnover. In forests,

bird communities tracked changes in vegetation structure, precipita-

tion, and geographic distance. In agriculture, vegetation structure

was more uniform (as in Flynn et al., 2009), and did not influence

bird turnover. Also unlike in forests, agricultural vegetation exhibited

no significant changes across the precipitation gradient. This may

explain why forest but not agricultural bird communities still exhib-

ited turnover along the precipitation gradient after including distance

covariates (Table S3). Indeed, when comparing sites with similar pre-

cipitation, communities exhibited equivalent turnover in forest versus

agriculture; however, community turnover between sites on opposite

ends of the precipitation gradient was 13% higher in forests than in

agriculture.

Evidence that vegetation structure mediates climatic effects on

birds is accumulating (Bennett, Clarke, Horrocks, Thomson, & Mac

Nally, 2015; Ferger, Schleuning, Hemp, Howell, & B€ohning-Gaese,

2014; Jankowski, Ciecka, Meyer, & Rabenold, 2009; Jankowski et al.,

2013), but a mechanistic understanding for the relationship remains

elusive. Effects may be direct if climate-induced vegetation changes

decrease nesting, foraging, or roosting site availability. In Australia,

for example, prolonged drought caused dramatic changes in vegeta-

tion structure and in bird communities, especially in smaller forest

fragments (Bennett et al., 2015). Ground and burrowing nesters

exhibited the strongest declines, which may have been due to reduc-

tions in shrub and herbaceous ground cover that may serve as nest-

ing sites (Bennett et al., 2015).

Climate-induced changes in vegetation structure may also affect

bird communities indirectly. First, changes in vegetation structure

may decrease food availability. For example, warmer and wetter cli-

mates in Tanzania were shown to increase vegetation heterogeneity,

which bolstered fruit and invertebrate food resources, which in turn

increased frugivore and insectivore richness (Ferger et al., 2014). In

Panama, longer dry seasons decreased bird population growth rates

and recruitment, most notably for fruit and seed eating species

whose food resources are often sensitive to tropical precipitation

dynamics (Brawn, Benson, Stager, Sly, & Tarwater, 2016). Second,

changing vegetation structure could impose new top-down controls

on bird communities. In the United States, decreased snowfall

caused declines in woody plant density, which exposed multiple

songbird species to elevated nest predation rates (Martin & Maron,

2012). Third, vegetation structure change could benefit a few strong

F IGURE 6 Agricultural communities are more similar to
communities in drier than wetter forests. In (a) and (b), each point
represents the distance from a forest plot to the centroid of all
agricultural plots. A greater centroid distance indicates that the site’s
bird community is more distinct from the bird community found in
the “average” agricultural site. For all plots, lines depict significant
effects of forest-site precipitation on centroid distances; shaded
regions are 95% confidence intervals. Centroid distances are
calculated from the turnover component of Sorenson (a, c) and
Bray–Curtis (b, d) dissimilarity. In (c) and (d), points represent the
distance of each plot to the centroid of all the plots located on the
same farm but in the opposite land use. Compared to drier regions,
wetter regions exhibit significantly more divergence between
communities in forest versus agriculture with Sorenson metrics (c)
and marginally more divergence for Bray–Curtis metrics (d)
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competitors, altering competitive dynamics. In Australia, prolonged

drought created more open habitats where Noisy Miners (Manorina

melanacephala) thrived and displaced other native species (Bennett

et al., 2015). Finally, climate-induced vegetation structure may alter

local microclimates and impose new physiological filters on birds.

Sites with open, “shrubby” vegetation, for example, may simply be

too hot for some species to persist.

Regardless of mechanism, a strong relationship between birds

and vegetation structure was likely responsible for our observation

that bird communities exhibit non-independent responses to land-

use and precipitation gradients. With shorter, thinner trees and more

herbaceous plants, drier forests were more similar to agriculture in

vegetation structure than wetter forests were to agriculture. As a

result, species that were more common in agriculture tended to

increase in abundance in drier regions, while more forest-affiliated

species tended to increase in wetter regions. Thus, we found evi-

dence for our third prediction: agricultural communities were, on

average, more similar to the communities present in drier than wet-

ter forests.

Importantly, some of the trends that we identified would not

have been apparent had we analyzed raw detection data (as in most

prior b-diversity studies) because of the large amount of detection

error for any given sampling instance, and because of variable

detectability between species and across habitats. Nonetheless, cur-

rent methods for modeling detection are not without faults. First, for

highly mobile organisms (such as birds) that are not bound to highly

localized areas, such models estimate the number of animals that

use a given area throughout the season, rather than a point abun-

dance at a given time. Second, and more importantly, binomial mix-

ture models may overestimate the abundance of rare species in the

meta-community (Gomez, Robinson, & Ponciano, 2017), although

this behavior is minimized as the number of sampled sites increases

and the absolute magnitude of overestimation is fairly small. With

respect to our findings, overestimation of rare species could either

result in more or less apparent b-diversity depending on the manner

and locations in which rare species are overestimated. Further meth-

ods development that corrects for model pathologies regarding rare

species is clearly needed. Ultimately, however, we believe that mod-

eling detection uncertainty is a substantial improvement over analyz-

ing observed counts. Because detection is known to vary strongly

across species and habitat types, implicitly assuming perfect detec-

tion can lead to false conclusions about occupancy and abundance

trends across environmental gradients (e.g., Ruiz-Guti�errez, Zipkin, &

Dhondt, 2010).

Across the tropics, agriculture is continuing to replace forests

(Hansen et al., 2013), and, although climate models predict spatial

variation in precipitation trends, drying is expected to intensify in

northwest Costa Rica (Magrin et al., 2014; Rauscher et al., 2008).

Our results provide the first direct evidence that species and com-

munity-level responses to both global changes may not be indepen-

dent. Prior studies have shown (at a much coarser scale) that

species’ climate envelopes are predictive of their habitat preferences:

species with ranges encompassing dry (Frishkoff et al., 2016) and

hot (Barnagaud et al., 2013; Clavero et al., 2011) regions are more

likely to thrive in agriculture than forests. Moreover, prior work sug-

gests regional climate regimes may even determine habitat prefer-

ences, with agricultural species invading forests in regions where

climates are warmer or vegetation structure is shorter and shrubbier

(Frishkoff, Hadly, & Daily, 2015; Frishkoff et al., 2016). Together,

our work and these prior findings suggest that habitat conversion

and climate drying may favor the same species and homogenize

communities more rapidly than previously anticipated. Looking for-

ward, our work thus suggests that wet forest bird communities

across the tropics may be particularly vulnerable to global change.

Because ongoing climate drying and deforestation appear to both

push community composition in the similar direction, maintaining

future community-level biodiversity will likely necessitate preserving

wet forest refugia and developing targeted conservation plans for

wet forest wildlife.
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