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Abstract
Purpose of Review Countryside biogeography seeks to explain the distribution of wildlife in human-dominated landscapes. We
review the theoretical and empirical progress towards this goal, assessing what forces control the presence, abundance, and
richness of species in anthropogenic and natural habitats, based on characteristics of the landscape and the species themselves.
Recent Findings Recent modifications of species-area relationships that incorporate multiple habitat types have improved un-
derstanding of species diversity in countryside landscapes. Attempts to understand why species affiliate with human-modified
habitats have been met with only partial success. Though traits frequently explain associations with human-modified habitats
within studies, explanatory traits are only rarely shared between studies, regions, or taxa. Nonetheless, greater attention to the
regional and climatological context of countryside landscapes has uncovered that (i) species that associate with human-modified
habitats within landscapes tend to occur primarily in warm and/or dry biomes at regional scales and (ii) species that rely
exclusively on human-modified habitats in cool or wet regions may be restricted to natural habitats in warm or dry regions.
Summary There remains a pressing need to determine how biodiversity can best be supported within landscapes to preserve
nature and maximize ecosystem service benefits for humans. Future work in countryside biogeography must identify how land-
use change interacts with other global stressors (e.g., climate change), determine how extinction debt and population sinks
influence diversity, quantify the cascading effects of community changes on ecosystem services, and elucidate the evolutionary
history and origins of species that today dwell in the countryside.

Keywords Anthropocene . Ecosystem services . Traits .Matrix . Fragmentation

Introduction

As human influence on Earth has expanded over the past
millennia, an ever-greater proportion of the planet’s surface

can be described as “countryside”—an intermixing of human
habitations, agricultural lands, and remnant natural or near-
natural habitats. Countryside biogeography seeks to under-
stand the distribution of biodiversity across these human-
dominated ecosystems [1]. In practice, countryside biogeog-
raphy has been primarily focused at the landscape scale,
attempting to elucidate the environmental forces that shape
species distributions and community compositions. These
forces have included variables such as the distance to
protected areas, alternative local practices (e.g., planting crops
in polyculture [2]), and wildlife-friendly landscape practices
(e.g., maintaining nearby remnant vegetation [3]).

The discipline emerged in the 1990s to more holistically
investigate wild, feral, and domestic species across all
components of landscapes and ecosystems, including nat-
ural, semi-natural, and fully anthropogenic habitats [1,
4–6]. This epistemological lens differentiates countryside
biogeography from previous traditions in that it shifts fo-
cus away from the patch paradigm that dominated
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conservation in the 1980s. This view, shaped by the
strength and predictive power of MacArthur and Wilson’s
Theory of Island Biogeography [7], concentrated sampling
on intact forest reserves and forest fragments of varying
sizes: the active metaphor being that forest fragments are
akin to islands in a sea of inhospitable anthropogenic land
cover.

With greater scrutiny came increasing documentation of
extensive biodiversity persisting, and in some cases thriv-
ing, within the human-modified “sea” of countryside hab-
itats [4, 8, 9]. Species that relied on remnant fragments
often readily dispersed through countryside habitats, mak-
ing the countryside much more permeable to species move-
ments than true islands surrounded by water [10]. As a
result, the type of land use that surrounded fragments
(i.e., the “matrix”; see Box 1) was shown to play a role
in determining community composition within fragments
[11–13]. More importantly, many individuals of native
species were shown to complete their lifecycles entirely
within these countryside habitats [13, 14], meaning a
fragment-only focus overlooked a large portion of the hab-
itat within landscapes. Together, the distribution and
movement of biodiversity outside of native habitats
brought into question the degree to which Island
Biogeography provides an apt predictive framework for a
landscape-wide understanding of biodiversity and called
for greater attention for biodiversity in diverse countryside
habitats [13, 15–18]. Today, the study of countryside bio-
geography and closely related disciplines are striving to
provide predictive frameworks for understanding the
changes experienced by biodiversity over the coming cen-
turies [1].

We organize this review by first providing a theoretical
grounding in how countryside biogeography theory differs
from island biogeography theory. We then describe how
empirical studies have documented (i) the environmental
forces that determine biodiversity in the countryside and
(ii) how distributions of organisms at the landscape scale
reverberate to affect regional and continental species pools
(and vice versa). Next, we examine the species-level prop-
erties (i.e., traits) that facilitate survival in countryside hab-
itats versus natural habitats. Finally, we describe what is
known regarding how species distributions in the country-
side impact ecosystem functioning, as well as the ecosys-
tem services provided to humans. We end by drawing at-
tention to unanswered questions in countryside biogeogra-
phy. Historically, there has been a strong bias towards ag-
ricultural and grazing landscapes in countryside biogeo-
graphic research, due in part to their prominence across
the globe [19]. The examples we discuss draw primarily
from such landscapes, but better integration of landscapes
with substantial human habitation is clearly needed and
will doubtlessly provide further insights [20].

Box 1: Defining “Matrix” in Countryside Ecosystems

Within the field of landscape ecology, the use of the word “matrix” can
take on two alternative meanings. The first stems from metapopulation
theory [21, 22] in which a species’ “habitat” (locations that maintain its
populations) is contrasted with the non-habitat “matrix” (which it does
not use but can move through to colonize new habitat patches). This
definition is implicitly species centric, as what constitutes habitat versus
matrix will differ between species. The other widely used definition is
“matrix” as “other,” referring to any land cover type(s) in the landscape
other than the focal one (typically primary natural habitat), or alterna-
tively the single major land cover type in which patches of some other
focal habitat are embedded [23, 24]. This definition is landscape centric,
with the implicit assumption that the focal habitat is the most ecologically
valuable type in the landscape. This can be subjective, with different
researchers potentially classifying alternative parts of the landscape as
matrix. In the landscape-centric version, it is reasonable to speak of
“matrix habitats”, whereas in the species-centric version such a phrase is
oxymoronic.
The two meanings of the matrix closely align with the “pattern-oriented
approaches” and “species-oriented approaches” for studying the biology
of human-modified landscapes discussed by Fischer and Lindenmayer
[17]. Nevertheless, these two definitions are still often used interchange-
ably in the literature or simply acknowledged simultaneously in the same
definition [24]. For those species that primarily associate with natural
habitat types, the definitions are identical. The term “matrix”, however,
becomes problematic for species that associate strongly with
human-modified land covers. Further, human-modified land covers may
contain many ecologically distinct habitat types (e.g., shade coffee versus
pasture) and, as such, a single designation of “matrix” risks obfuscating
their ecological differences. A similar single designation of “habitat” in a
landscape is equally problematic [17]. Ultimately, a conceptual dichoto-
my between “matrix” and “habitat” undercuts the natural continuum in
habitat use experienced by species and the diversity of land covers
contained within landscapes (Fig. 1). A strict dichotomy may also psy-
chologically diminish the probability that researchers devote the same
attention to sampling in the “matrix” like they would in “habitat”, leaving
scientifically “neglected communities” in anthropogenic habitats. While
the term matrix is rarely used in countryside biogeography, the term is
perhaps still useful for communication and as a shorthand. For these
reasons, when we use the term, we have adopted the species-centric
definition of matrix as “non-habitat” throughout this review, while ac-
knowledging that there is no clear-cut threshold for when a location
transitions from “matrix” to “habitat” (Fig. 1).

Countryside Biogeography Theory

Understanding the different responses of biodiversity to hab-
itat change is a key to improving conservation. Based on the
equilibrium theory of island biogeography [7], there is a well-
known relationship between the size of a habitat and the num-
ber of species in that area [25]. These traditional species-area
relationship (SAR) modeling approaches consider native hab-
itat patches (or nature reserves) as islands, in which the matrix
surrounding them is a “sea” of completely inhospitable habi-
tat. Such models have been widely used to compare species
diversity patterns when regions differ in area, predict the re-
sponse of species richness to native habitat area loss, and
estimate species extinctions across a wide variety of systems
and scales [25–27].
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Yet, the overextension of this framework to predict species
loss within human-dominated landscapes has frequently been
questioned, as biodiversity responses regularly defy patterns
predicted by the island biogeography theory [28, 29].
Criticism towards applying the theory of island biogeography
to countryside ecosystems stems from the vast empirical evi-
dence that many species are not constrained to fragments of
their native habitat and that the anthropogenic habitats sur-
rounding remnant native habitat fragments can play an impor-
tant role in the conservation of biodiversity [1, 30]. As a result,
studies that quantify the effects of the land covers surrounding
focal patches better explain community composition than
those that take a binary “habitat/non-habitat” approach [30].
This is because the surrounding countryside habitats can fa-
cilitate recolonization of native habitat fragments [31] and also
support significant levels of biodiversity within them [4, 8,
32–36]. In fact, according to the IUCN reports of habitat
use, at least 47% of 10,061 extant bird species use human-
modified habitats to some degree, with 32% using agricultural
habitats specifically [37].

In response to these limitations, new, holistic methods for
predicting diversity patterns are emerging for countryside eco-
systems (Box 2). These multi-habitat SAR models adapt the
island biogeography paradigm to one that incorporates multi-
ple habitats and their associated biodiversity [38–41]. Such
models tend to be calibrated based on the extent and/or quality
of both native and human-modified habitats as perceived by
the taxon. Overall, by accounting for species persistence in
human-modified habitats, these models have proven to

outperform traditional SAR approaches when describing the
number of species in countryside landscapes, both at local and
regional scales [42–45], although the improvement was espe-
cially marked at the local scale. Specifically, empirical studies
have suggested that as the sampling scale increases, the effect
of land use on biodiversity patterns tends to decrease [44].
That is, at very small scale, the habitats are homogenous and
one either considers species entirely within native or entirely
within a human-modified habitat. In contrast, at larger scales,
any sampling unit is a mixture of both habitats and the effect
of land-use change on the SAR decreases [45].

Multi-habitat SAR approaches still rely on very simplistic
assumptions, such as that species are randomly distributed across
the landscape and that species increase with habitat area indepen-
dently of how fragmented the habitat is (although some SAR
models specifically targeting this issue have been developed
[46]). In general, these assumptions appear justified, as empiri-
cally the extent of a given habitat and the composition of the
landscape tend to better explain diversity than isolation or con-
figuration [47]. While further improvements remain, multi-
habitat SAR models provide valuable insights into biodiversity
dynamics in countryside ecosystems. Notably, recent works
using the countryside species-area relationship (cSAR) frame-
work allow for more precise detection of community response
(e.g., specialists versus generalists) to land-use change [48].
These models are being used to help address whether biodiver-
sity protection is best achieved by pursuing wildlife-friendly
farming methods that may sacrifice yield and require more land
to be converted (land sharing) or by intensifying yield within

The Continuum in Use of the Countryside 
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Fig. 1 Distinguishing between “matrix” and “habitat” is useful
conceptually, yet species interact with multiple land covers in the
countryside along a continuum. Each species will perceive each land
cover available in a landscape differently, as somewhere along the
matrix-habitat continuum. We illustrate this continuum, in terms of how
individual species respond to various forms of non-primary land cover

based on the degree to which they can move through, acquire resources
and maintain viable populations within it [94, 172–175]. Green and
yellow lines depict how each species perceives the specified land cover
along the matrix to habitat continuum, with dashed sections illustrating
where the strict dichotomy between the two becomes hazy
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farms in the hope that this will decrease pressure to convert
natural habitats (land sparing) [49]. However, preliminary evi-
dence suggests that land sparing and land sharing are not neces-
sarily mutually exclusive at larger scales, since their potential
impacts on biodiversity are context dependent [48]. For example,
in Portugal, land-sparing strategies present some opportunities, as
there is scope to intensify existing agricultural areas to increase
yields [48]. However, such a strategy is likely to mainly benefit
biodiversity in the center and north of Portugal, regions already
undergoing extensive farmland abandonment. In contrast, most
of the south of Portugal is characterized by Montados, a well-
established agro-forestry system that supports high levels of bio-
diversity and ecosystem services (i.e., land sharing strategy) [48].

Current theoretical frameworks, like the cSAR, tend to focus
on species as the units of biodiversity, measuring changes in
ecosystems by understanding changes in species counts. Yet
biological diversity is a multifaceted construct, which includes
phenotypic variation within and between species and diversity
in how species interact within one another and their ecosystems.
Future theory must aim to evaluate the links between species in
human-dominated ecosystems, so as to measure both species
diversity and ecosystem functioning. Doing so will provide a
better theoretical understanding between changes in biodiversi-
ty, ecosystem functioning, and human well-being [50].

Box 2: Modeling Species Diversity in the Countryside

Environmental Controls of Species Distributions
in Countryside Landscapes

Avariety of conceptual models have been proposed to explain
how organisms distribute themselves across countryside land-
scapes [16, 52]. Pulsford et al. [16] outlines five models, all of
which differ explicitly in how they consider human-modified
habitats. As discussed above, island biogeographic theory [7]
ignores everything except the focal natural habitat type, con-
sidering only the patch size and isolation to drive biodiversity
dynamics. The habitat amount hypothesis postulates that it is
total (semi-natural or natural) habitat amount within an area—
irrespective of configuration and isolation of discrete
patches—that determines species abundances and diversities
[53]. The matrix tolerance model [54] shifts focus to modified
habitats, hypothesizing that a species’ abundance in a human-
modified landscape will depend entirely on its ability to use
the modified habitats—which can mean either persisting with-
in or just moving through these land covers. The matrix qual-
ity model [55] extends the matrix tolerance model, arguing
that not all modified habitats are the same and thus species
will vary in their ability to use differentmodified habitats (e.g.,
shade coffee versus sun coffee versus forest). Finally, the con-
tinuum model [56] rejects the idea that modified habitats
should be binned into discrete categories, instead arguing that
species abundances in modified habitats will depend on un-
derlying gradients in environmental conditions. All pastures,
for example, are not the same: as tree density incrementally
increases in pastures, so too may nest site availability and
microclimate refugia, increasing abundances of tree-nesting
or cool-adapted organisms. In practice, each conceptual model
may prove predictive in different situations—though predic-
tions from strict island biogeography are rarely upheld in the
countryside [16, 52, 57] despite their strong explanatory pow-
er in true island systems [15, 58]. Complete tests of all alter-
native hypotheses are rare. However, in a study of Australian
amphibians and reptiles, most species did not respond to dis-
crete land-use types per se (e.g., forest versus type of anthro-
pogenic land cover). Instead, the majority of species
responded in species-specific manners to underlying environ-
mental gradients (i.e., the continuum model), which may
themselves be influenced by land-use type and landscape
structure [16]. While modeling species responses to environ-
mental gradients should be the goal for basic science describ-
ing and predicting community composition in anthropogenic
habitats, these models can be extremely data intensive.
Parameterizing and implementing continuum models for con-
servation decision-making may be time and cost prohibitive
and unnecessary [52], especially if model study systems can
be used to understand how underlying environmental gradi-
ents tend to correlate with land-use types.

Nevertheless, that underlying environmental gradients and
resources are the primary forces controlling abundance

The species-area relationship (SAR) represents species richness (S) as a
function of sampling area (A), where larger areas generally support more
species. It is commonly given as a power function [51]:

S ¼ cAz;

where S is the number of species in area A and c and z are the fitted
parameters. Since the year 2000, a number of SAR-based models have
been put forward that considered both habitat area and habitat composi-
tion to explain species richness (hereafter called multi-habitat SAR
models). Tjørve [38] proposed a framework to build species diversity
models in multi-habitat landscapes by combining species-area curves for
different habitats. A year later, Triantis et al. [39] proposed the choros
model, where the variable “area” is replaced by the variable “choros” (K),
which arises as the result of the multiplication of the number of different
habitats in an area (H) and the size of that area (A). A few years later, the
countryside SAR model proposed by Pereira and Daily [40] was the first
to describe differential habitat use by different species. It introduced a
parameter, hij, reflecting the habitat affinity of a species group i to a
habitat type j. Here, the richness of each species group i is given by:

Si ¼ ci ∑
n

j¼1
hijA j

 !z

;

where n is the number of modified habitat types and Aj is the area covered
by habitat j. Then, the total number of species in the landscape is given by
the sum of species in each group. More recently, Koh and Ghazoul [41]
proposed the matrix-calibrated SAR, where matrix effects are incorpo-
rated in the SAR framework by partitioning the z value of the power
model into two components: y, a constant describing the unsuitability of
the matrix and σ, the sensitivity of the taxon to the transformed habitat.
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provides scope for fine-tuning anthropogenic habitats to sup-
port biodiversity. Anthropogenic landscapes contain a multi-
tude of environmental gradients (microhabitat structure, mi-
croclimate, resource availability), all of which can vary across
natural habitats, semi-natural habitats, crop fields, and zones
of human habitation. Importantly, both naturally and through
management, these environmental gradients also vary within
land-use types. As a result, common strategies to conserve
biodiversity in agricultural landscapes include reducing local
management intensity, increasing resources used by wildlife,
and facilitating heterogeneous landscapes. Although local
management is usually implemented at the farm scale, the
impacts of agricultural intensification operate at scales from
fields to regions. Therefore, conserving biodiversity in these
landscapes requires a multi-scalar approach [59–61], as some
taxa respond more strongly to local management, while others
respond to landscape-level features. Depending on species
traits and environmental context, controls on biodiversity
may be stronger at local or landscape scales, and effects can
interact across scales [62, 63].

Within the countryside, local practices that support biodi-
versity typically focus on adding vegetative cover, increasing
environmental heterogeneity, and reducing external inputs
(e.g., pesticides and fertilizers). For example, one study found
that, across a range of local management practices, lower-
intensity management (e.g.., organic practices, reduced appli-
cation of pesticides or fertilizer, and planting flower strips)
increased diversity of plants and invertebrates, but not verte-
brates [60]. Organic management may include some or all of
these practices and often supports higher species richness and
abundance compared with conventional systems [64, 65];
however, a focus on the outcomes of specific practices may
be more informative [66]. Within fields, crop diversification
and the maintenance of non-crop vegetation benefit arthro-
pods, birds, and bats by supplementing available on-farm food
resources and creating diverse habitats [2, 59, 67, 68].

The addition or restoration of perennial habitat, such as
hedgerows and scattered trees, can support biodiversity by
creating habitat, supplementing resources, and increasing ma-
trix permeability in systems where trees have been removed
[69, 70]. For example, isolated fruiting trees in agricultural
landscapes are an important resource for tropical frugivorous
birds, and their incorporation into farm boundaries or hedge-
rows could bolster biodiversity in the countryside [71].
Hedgerow structural components (i.e., complexity, height,
and width) typically determine conservation value for taxa
[72]. Hedgerow connectivity is also important for mobile spe-
cies, such that concerted replication at the landscape scale can
boost pollinator diversity to levels similar to some natural
communities [69]. Areas near scattered trees support higher
biodiversity than open matrix areas and, for many taxa, levels
of species richness and abundance that are similar to natural
habitat [73, 74]. A recent meta-analysis supports the benefits

of scattered trees for arthropods, vertebrates, and woody
plants, but not for herbaceous plants, highlighting differences
in effects among taxa [73]. Indeed, incremental increases in
local tree cover within tropical agriculture provides benefits
for vertebrate diversity saturating at or near that held within
forest reserves [8]. Scattered trees may work especially well
on grazed lands, such as silvopastoral systems, where they can
improve microclimatic conditions for other species and may
comprise diverse tree communities that facilitate forest regen-
eration [75].

Supporting wildlife across countryside habitats, be it in
fragmented remnant vegetation or within farms themselves,
and conserving large tracts of natural areas as preserves are
both essential strategies for biodiversity conservation [76].
Wildlife-friendly, on-farm practices and surrounding semi-
natural environments function synergistically to improve hab-
itat quality and support higher dispersal rates, as well as higher
biodiversity, at greater distances from semi-natural habitat
[77–79]. However, the scale and threshold of (semi-)natural
habitat amount needed to guarantee the maintenance of biodi-
versity vary by taxa and region [79–81], with mobile species
in higher trophic levels generally responding to landscape
structure at larger spatial scales [82, 83]. The degree to which
large tracts of land are needed lies in part on whether species
and biodiversity as a whole respond primarily at local or land-
scape scales. The answer remains contentious, with evidence
supporting both viewpoints in alternative study systems and
analytical frameworks [60]. In addition to changing the
amount of habitat, landscape modification has also increasing-
ly fragmented semi-natural habitats. The resulting creation of
edge habitat can have either positive or negative effects on
biodiversity [84]. In contrast, landscape heterogeneity (in
some ways the opposite side of the fragmentation coin) tends
to have a positive effect on biodiversity conservation [85–88].

Recent literature has addressed the degree to which land-
scape attributes moderate the effects of local agricultural man-
agement practices on biodiversity outcomes. Local environ-
mental diversification may bolster biodiversity in simple land-
scapes (i.e., landscapes dominated by a single anthropogenic
land cover) with a minimum threshold of semi-natural habitat
that supports species pools, but may offer limited benefits in
already heterogeneous landscapes that currently support high
levels of biodiversity [89, 90], suggesting that local diversifi-
cation and semi-natural habitat can sometimes be interchange-
able [62, 66]. However, the efficacy of local agricultural man-
agement practices on biodiversity gains likely depends on the
composition of regional species pools, such that diversifica-
tion practices may bolster species richness more in complex
than simple landscapes [59].

The role of habitat fragmentation, as of yet, have not been
well addressed in countryside biogeography, in part because the
effects of fragmentation of human-modified habitats (in addi-
tion to native habitats) is difficult to measure in most systems

Curr Landscape Ecol Rep

Author's personal copy



where human-altered habitats are fairly continuous. Studies in
systems where the independent effects of fragmentation and
habitat amount can be robustly assessed offer a rich arena for
future work [91]. To date, and perhaps counterintuitively, the
effect of fragmentation in most systems appears to be weakly
positive for biodiversity [92], though this remains hotly
contested and varies substantially from system to system.

One important observation is that though many species
may persist in countryside habitats, community composition
often strongly differs between undisturbed protected areas and
countryside habitats, including embedded forest fragments
[93, 94]. These trends complicate an ongoing debate regarding
the merits of enhancing the conservation value of countryside
landscapes (land sharing) versus intensifying agricultural pro-
duction in countryside habitats while preserving more land in
ecological reserves (land sparing). A burgeoning literature
continues to grapple with these two options, with some studies
concluding that land sparing is essential to preserve forest-
dependent species [95] and others arguing that spatially
aligning conservation and food production can help achieve
both production and conservation goals [96]. Although land
sharing approaches that increase yields and minimize negative
impacts to biodiversity do exist, these approaches are system
specific and are influenced by contrasts between production
and endemic systems and the feasibility of adopting and
implementing these solutions [97]. Studies that track species
persistence over longer time scales may help reconcile the
debate, with the relative merit of each approach shifting based
on the local conservation and production goals [76]. Both
land-sharing and land-sparing approaches are likely needed
to safeguard species. Countryside landscapes can be managed
for conservation and complement protected areas by increas-
ing habitat connectivity and allowing for the movement of
species and ecological processes [98].

Anthropocene Biogeography and the Connection
Between Local, Regional, and Global Diversity

While on-farm practices and landscape heterogeneity can help
support biodiversity represented from within regional species
pools, human influences are also causing the species pools
themselves to shift. Indeed, as the environmental forces that
shape distributions at the local and landscape scale become
better understood, there is growing emphasis on uncovering
how larger-scale regional and global processes determine spe-
cies pools in human-dominated landscapes. International trade
and transportation networks are connecting distant biogeo-
graphic realms and increasing the size of regional species pools
[99, 100]. Human history and economic distance [99] are there-
fore beginning to swamp the effects of evolutionary history and
geographic distance in determining species pool structure. For
example, among non-native birds that colonized new areas be-
fore the twentieth century, the majority moved from Great

Britain to colonial dominions of the British Empire [101]. The
dissolution of ancient biogeographic barriers means that the
broad scale biogeography of the Anthropocene is in some ways
more environmentally deterministic. For example, assemblages
of gastropods are no longer sorted into seven geographic clus-
ters defined by continental separation, but are instead primarily
organized into two clusters defined only by tropical versus tem-
perate climate [100].

What remains to be seen is whether anthropogenic land-
cover change is helping to drive the dissolution of these ancient
biogeographic realms. In short, is countryside biogeography
reverberating up to regional and global scales? Preliminary ev-
idence does suggest that by creating consistent environmental
conditions irrespective of the natural biome, human land uses
create novel anthropogenic biomes (“anthromes” [102]) that
favor fortuitously pre-adapted species, sometimes from distant
corners of the globe. A small cadre of birds repeatedly succeed
in agriculture and urban environments, and invasive species
tend to associate with modified habitats rather than natural ones
[103]. Many Neotropical birds that affiliate with agriculture
tend to be absent from Neotropical forests and have biogeo-
graphic ranges that overlap with drier climate zones—hinting
that they may have evolved in drier grassland and shrub land
biomes and only colonized forested regions once humans cre-
ated open habitats there (Fig. 2) [104]. Further, adaptations for
survival during repeated environmental disturbances (e.g., for-
est fire and hurricanes) may render entire regional assemblages
more resilient to anthropogenic change [105].

Documenting how the “rules” of countryside biogeography
change across larger-scale natural environmental gradients
(e.g., climate gradients) is needed to address the generality of
ecological rules and identify predictable contingencies [47,
106]. For example, are countryside habitats typically inhabited
by diverse fauna or are there some climate zones or ecoregions
in which the countryside is especially depauperate in compari-
son with natural habitats? Studies that clarify these or similar
questions will further help to identify how multiple global
change drivers (e.g., land-use and climate change) might inter-
act together to shape future biodiversity. Recent work exploring
land-use and climate gradients suggest that habitat conversion
may synergize with climate warming and/or drying to drastical-
ly change community composition [94, 107–110]. For exam-
ple, bird communities are most strongly affected by drought in
fragmented natural habitats [108]. But the effects of habitat
conversion on communities may diverge in different regions:
in the lowland tropics, natural forest and human-dominated
habitats share only 40% of their amphibian species, whereas
in temperate zones over 90% of species occur in both habitats
[111]. Ultimately, researching the influence of classical biogeo-
graphic variables on landscape-scale countryside biogeography
will help upscale community level data to predict how commu-
nities will respond under future scenarios of land-use [112] and
climate change.
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While most previous work on the role of climate within the
context of the countryside has been conducted on endotherms
(especially birds), the mechanistic underpinnings that link bi-
ological consequences of habitat conversion to larger-scale
biogeography are particularly transparent for ectotherms.
The role of temperature appears supreme in defining ecto-
therm associations with human land uses in complex land-
scapes, where species’ critical thermal maxima on average
explain 38% of the variation in whether amphibian species
associate with natural forest environments or lands cleared
for human uses such as pastures and agriculture [113].
This link between thermal physiology and association with
human land-uses causes complex ramifications at broad spa-
tial scales. Frogs [114], lizards [110], and beetles [115] extend

their elevational range upslope in human-dominated habitats,
occupying geographic space that they do not in the natural
forest.

The repeated selection for individual species or consistent
types of species in human-dominated landscapes across the
globe is causing biotic homogenization [116, 117]. The spatial
loss of unique assemblages over geographic space and natural
environmental gradients is particularly stark in landscapes
with the most intensive forms of agriculture [118, 119].
Concerns of homogenization bleed above the species level:
even when identical species are not shared between distant
locations, human domination of landscapes favors the same
evolutionary lineages, meaning that phylogenetic homogeni-
zation still occurs [111, 120].

Fig. 2 Within a given landscape, birds that are found in human-modified
habitats, like agriculture, come from different biomes and climate regions
than those found in natural habitats. For example, agriculture-associated
birds within four study landscapes in Costa Rica tend to have ranges that
overlap with drier biomes across the western hemisphere. a Map
depicting the average agricultural affinity of Costa Rican species whose
ranges overlap with each depicted location on the globe. Blue indicates
that most species with ranges overlapping a location occur primarily in
forest reserves in Costa Rica, while orange and red indicate that most
species occur in pastures, coffee, or banana plantations within Costa
Rica. b Annual precipitation correlates strongly with the expected

habitat affiliation of the birds, while c temperature plays only a
secondary role. d Major biomes across the western hemisphere. e Box
plot depicts median and interquartile ranges of average agricultural
affiliation in each of the major biomes of the western hemisphere
(colors as in d); means are marked by red points. The dashed line
indicates equal affiliation with forest and tropical agriculture. In panel e,
each semi-transparent black point represents a 1/3 degree by 1/3 degree
grid cell, jittered to better show the distribution of the data. Costa Rica
(where the habitat affiliations are generated) is indicated in gray in all
maps. Figure reproduced from [104]
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Species Traits and Countryside Distributions

One key to describing the distribution of species in the coun-
tryside is to determine which species traits confer an advan-
tage for survival in alternative land covers. To garner the latest
evidence for which traits determine species distributions in
agricultural landscapes, we conducted a vote count of empir-
ical studies published within the last 10 years (2008–2017)
that investigated animal traits along an agricultural intensifi-
cation gradient. We searched all articles in Web of Science
(https:www.webofknowledge.com) using the following
search query: (“trait*” or “guild*” or “phylogen*” or
“functional group”) and (“countryside” or “land-use” Or
“land use” or “agricultur*” or “anthropogenic” or “habitat
modification”) and (“distribution” or “abundance”). We
considered significant relationships to be those with p < 0.05.

Based on this review of recent trait-based publications in
countryside biogeography, the number of publications on this
topic has steadily increased over the past 10 years (Fig. 3),
focused especially on birds and insect pollinators. Dietary
guilds in particular often exhibit variable responses to agricul-
tural land-use change (Fig. 4). Birds, frugivores, insectivores,
and nectarivores tend to decline while carnivores and
granivores increase in agriculture [121, 122]. Almost all die-
tary guilds exhibit declines in response to agricultural land-use
change in the limited number of studies on mammals [123].
Studies measuring diet breadth of invertebrates found no pat-
terns in responses of generalists, but a general trend of de-
clines in specialist invertebrates over gradients of agriculture
[124]. Generally, human-dominated landscapes may promote

invasive species that have a greater dietary breadth as com-
pared with native species [123].

Reptile and amphibian species that persist in hotter agricul-
tural land uses consistently have larger body sizes and higher
critical thermal maxima [113, 114] because body size is di-
rectly related to thermal tolerance [125]. Meanwhile, bird,
mammal, and invertebrate species that migrate or disperse
large distances tend to fare better in agriculture than non-
migrants or short-distance dispersers [126–128], possibly be-
cause they can better track seasonal resources and adapt to
land-use change [14, 129].

Species with high reproductive rates may also be better
able to persist in agriculture because they can better compen-
sate for increased mortality in a lower-quality habitat [130],
but studies of reproductive effort in relation to agricultural
land use have found inconsistent relationships [127, 128].
Notably, bird species with longer incubation and fledgling
periods (which is empirically related to high juvenile survival)
increase in abundance in farmland, suggesting that low juve-
nile survival may be a mechanism that increases species vul-
nerability to land-use change [130].

Recent work has uncovered that species responses
to habitat conversion are frequently phylogenetically con-
served, meaning that closely related species tend to all as-
sociate with (or avoid) human-modified areas [111,
131–134]. Further, agricultural expansion and intensifica-
tion particularly threatens more evolutionarily distinct spe-
cies, while species from more recently diversifying clades
are able to utilize agricultural habitats [131, 135, 136]. Why
this is remains unclear.
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Uncovering trait-based generalities in countryside bioge-
ography may have been slowed by several recurring method-
ological challenges. Grouping species into coarse categories
such as dietary guilds may not accurately represent species
attributes, as many species utilize more than one type of food
[137]. Studies often assess changes in abundance within func-
tional groups [138, 139], which can lead to incorrect
inferences about relationships between traits and land use if
one species has a disproportionately high abundance, and thus
large effect, within its functional guild. This will result in more
studies reporting significant trends (in either direction) than is
appropriate based on the data and may contribute to the
variation in directionality reported between studies (Fig. 4).
These issues can be addressed through species-based (rather
than guild based) assessments of countryside distributions
[140].

Overall, recent studies have found few general patterns
in the traits that determine species distributions in anthro-
pogenic landscapes, and there are many gaps in trait-based
research in countryside biogeography. This issue is
highlighted by two recent analyses examining the predic-
tive power of traits across multiple landscapes, which found
surprisingly little consistency in which traits seemed to de-
termine responses [124, 141]. Future studies must increase
breadth and depth of trait-based research. Broadening
should take the form of considering physiological traits
of endotherms and a larger diversity of taxa, including mi-
crobes. Increasing depth should occur by addressing the
reasons for inconsistency between studies, manifest by
interactions between traits and the environment or two-way
interactions between traits [142].

Ecosystem Function and Ecosystem Services

Wild species in countryside landscapes can provide significant
benefits to private landowners by recycling nutrients that re-
plenish soil quality, pollinating crops, and controlling damaging
insect pests, weeds, and crop diseases, [143]. In the USA alone,
the natural enemies of crop pests prevent > US$4.5 billion/year
in crop losses [144], and animal pollinators are directly respon-
sible for ~35% of global food supply [145]. Yet, wild species
can also plague farmers; for example, by consuming or com-
peting with crops and spreading diseases [146]. Thus, over the
past decade, ecologists have begun exploring relationships be-
tween biodiversity, ecosystem services, and ecosystem disser-
vices in natural and farming landscapes [147].

Overall, biodiversity seems to correlate with ecosystem
services, but significant heterogeneity exists among different
services [148]. For example, pollination may be more directly
linked to biodiversity than pest control [147], perhaps because
biodiverse communities of natural enemies may contain more
species that consume each other [149, 150]. Confronted with
such complexity, ecologists are again turning towards trait-
based analyses for predicting the relationship between biodi-
versity and ecosystems services in human-dominated land-
scapes [151]. Indeed, because traits modulate species’ impacts
on ecosystems, the diversity of traits in a community is often a
better predictor of ecosystem function and services than local
species richness (e.g., [152]).

Traits can also help ecologists understand the relative resil-
ience of different ecosystem services to land management and
species loss. For example, one study found that larger bees and
dung beetles were both more vulnerable to disturbance and
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more efficient pollinators and nutrient recyclers than their
smaller counterparts, compromising the potential resilience of
pollination and nutrient recycling services [153]. On the other
hand, because abundant bees are responsible for the bulk of
pollination [154], few species are needed to provide pollination
services locally. This is not to say that pollinator biodiversity is
unimportant; by accounting for crop specificity and spatial pat-
terns of species turnover, Winfree and colleagues [155] calcu-
lated that at least 60 bee species were needed to meet a 50%
pollination threshold across only 15 sites and 3 crop species.

Looking forward, a major frontier for countryside biogeog-
raphy will be linking changes in land management to changes
in biodiversity and ecosystem services through trait-based
analyses [151]. Indeed, combining information about the traits
that dictate species responses to disturbance gradients with
information about the traits that control species effects on
ecosystems holds real promise. Thus far, most studies instead
simply correlate changes in ecosystem-service-provider abun-
dance or ecosystem services with local and landscape-level
management gradients. For example, both local practices (or-
ganic agriculture, farm-level diversification with hedgerows,
flower strips, etc.) and landscape attributes (surrounding
nesting or foraging sites) are associated with pollinator abun-
dance, richness, and pollination services [2, 156]. For pest
control, however, semi-natural vegetation in the surrounding
landscape is often associated with natural enemy abundance
[157], but may also enhance pest populations, leading to com-
plicated pest-control dynamics [158, 159].

Identifying and reconciling such tradeoffs is another
emerging focus for countryside biogeography, especially
when designing strategies tomanage biodiversity andmultiple
ecosystem services. For example, the “landscape-moderated
biodiversity versus ecosystem service management hypothe-
sis” posits that fragmented landscapes optimize movements of
habitat generalists between natural habitat remnants and
farms, bolstering ecosystem service delivery [160].
Increasing the farmland-natural habitat interface, however, is
in direct conflict with known strategies to conserve more vul-
nerable, forest-dependent species. In other cases, tradeoffs are
widely perceived, but not necessarily valid. For example,
widespread concern that wildlife vector foodborne disease
has led to significant habitat removal near produce farms in
California [161]. By evaluating multiple services and disser-
vices along landscape gradients at once, however, Karp and
colleagues [161, 162] found that non-crop vegetation was as-
sociated with elevated pest control and arthropod biodiversity
but no higher food safety risk.

Next Frontiers in Countryside Biogeography

Over the last two decades, substantial progress has been made
in delimiting the factors that control species distributions at
the landscape scale, be they characters of the environment

(distance from reserves, vegetative structural complexity, in-
tensive versus diversified farming practices) or the species
themselves (body size, trophic position, physiology). We
point towards four areas for investigation over the coming
two decades.

(i) How will land-use and climate change interact to struc-
ture species distributions in the countryside?

Habitat conversion and climate change together likely rep-
resent the two greatest threats to global biodiversity. How
these forces will interact together remains a major source of
uncertainty. Countryside biogeography must consider how
ongoing climate change will affect species’ landscape-scale
distributions [163]. Changing climate conditions could make
countryside habitats more or less hospitable for species that
use them as habitat, as well as more or less hospitable for
species that use them as a conduit to connect habitat patches
[125, 163]. Shifting climates might also lead to redistributions
of species. The majority of this work has taken a
macroecological approach and focused on the possibility that
habitat conversion and fragmentation will impede range-level
redistribution, especially for species that cannot easily travel
through human-altered land covers (e.g., [164]). However,
these redistributions may occur at the landscape scale, as open
countryside species come to rely on cooler forested habitats to
track their thermal niche (i.e., habitat switching [104, 114]).
Such habitat switching due to climate change may result in
increased competition in natural habitats. Alternatively,
climate-driven redistributions may occur across landscapes,
resulting in colonization of countryside landscapes from near-
by species pools. Such colonization could re-balance the dis-
tribution of biodiversity in anthropogenic versus natural hab-
itats, especially if certain habitats or species types tend to be
faster colonizers, with knock-on consequences for ecosystem
functions and services.

(ii) How do land-management practices and landscape con-
text cascade to affect biodiversity and go on to determine
ecosystem services?

A growing body of knowledge indicates that increasing
biodiversity in wild and managed ecosystems can enhance
the functioning of ecosystems and their contributions to peo-
ple [147, 148]. Historically, connections between biodiversity
and ecosystem services were explored in short, small-scale
experiments. A key frontier in countryside biogeography is
scaling up these studies across landscapes and over longer
time scales to examine realistic connections between biodiver-
sity, ecosystem services, and human well-being. Indeed, it is
now widely recognized that the non-random changes in com-
munity composition that accompany global change can have
reverberating implications throughout ecosystems [165].
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While studies connecting biodiversity and ecosystem func-
tions at large temporal and spatial scales are becoming more
common [166], very few studies have traced how realistic
changes in biological communities across landscapes ulti-
mately affect ecosystem services and rural livelihoods. For
example, small-scale studies may conclude that bee biodiver-
sity plays a limited role in pollination due to the overwhelming
importance of a few abundant species [154]. Yet, accounting
for natural changes in bee communities across landscapes and
cropping systems (β-diversity) highlights the rich diversity of
species needed to provide pollination at larger spatial scales
[155]. Similarly, the importance of diversity is accentuated
when multiple ecosystem functions and/or services are con-
sidered simultaneously [167]. A promising path forward for
countryside biogeographers may be leveraging trait-based
analyses to develop predictive frameworks for relating the
cascading effects of changing environmental conditions on
biological communities, ecosystem services, and their ulti-
mate impacts on human well-being [151].

(iii) Are countryside habitats a sink? Are species capable of
persisting in the countryside over the long term?

Countryside biogeography is challenged by the imperative
to move beyond a descriptive science, to one that can predict
the distributions of species in human landscapes into the fu-
ture. This goal can be partially addressed through concentrat-
ing on population dynamics rather than snapshots of commu-
nity structure. Ultimately, we need to know whether the pop-
ulations we see in agricultural habitats in the countryside are
self-sustaining, or whether they heavily rely on immigration
from remnant patches of native habitat, be they small frag-
ments or large formally protected areas. Further, when and
under what conditions might countryside habitats act as pop-
ulation sinks or evolutionary traps, which lure migrants to
their deaths thereby jeopardizing conservation within re-
serves? Finally, what is the relative strength of extinction debt
and colonization credit in human-altered landscapes?
Addressing these questions will be a challenge, given the data
requirements involved [168]. To ascertain whether habitats
(either natural or anthropogenic) are sinks, population vital
rates (recruitment and mortality) and movements (emigration
and immigration) must be tracked. For a single species, this
requires long-termmark-recapture studies, with sufficient spa-
tial sampling to quantify movement rates. Genetic studies
tracking relatedness between populations in the countryside
and more natural habitat are another option. However, for the
biodiverse communities of concern in countryside landscapes,
single-species approaches are unlikely to grant much insight
into the community as a whole, given the diversity of ways
that organisms respond to environmental gradients in the
countryside. Unfortunately, short cuts, such as using multi-
season dynamic occupancy models to examine extinction-

colonization dynamics of entire populations, do not offer a
clear solution. Pernicious population sinks can remain contin-
uously occupied through immigration, even as individuals
experience heightened mortality or diminished reproductive
rates. The collection of community-wide datasets of popula-
tion trajectories at the landscape scale are therefore a challeng-
ing, but necessary, target for research.

(iv) Evolutionary history of countryside species

A surprising number of species use and even seem to spe-
cialize on primarily open agricultural habitats in the country-
side. For example, a recent synthesis reported that approxi-
mately 10% of birds, 30% of reptiles, and 35% amphibians
were found exclusively in open agricultural habitats and not in
reserves within the Coto Brus landscape of Costa Rica [8].
These rates of unique species occurring in human-dominated
habitats or rates of abundance increases in human-dominated
habitats are consistent with other studies [111, 169]. Given
that anthropogenic habitats are evolutionarily novel, where
did these species come from? Potential hypotheses include
that these species evolved to exploit tropical forest gaps,
evolved in open grassland or scrubland habitat in nearby bio-
logical zones, or evolved in forests, but are coincidentally
(pre-) adapted to agriculture under certain climate conditions.
This last point is supported by the observation that lowland
forest species preferentially occur in open countryside habitats
in mid and upper elevations, where climates are cooler and
more analogous to shaded lowland forests [114, 115]. In ad-
dition to contemporary studies of habitat affiliations across
broad climate gradients, a promising path to address the evo-
lutionary origin of countryside species may be through phy-
logenetic analysis. For example, one hypothesis is that clades
of countryside species underwent heightened evolutionary di-
versification or experienced lower extinction risk during pe-
riods in Earth’s history when grassland predominated.

Conclusion

The discipline of countryside biogeography has documented a
sizeable fraction of landscape-scale biodiversity residingwith-
in human modified-countryside habitats [4, 8]. Only by seek-
ing to understand the complete distribution of organisms, in
protected reserves, in heavily altered ecosystems, and every-
thing in between, will it be possible to tailor conservation
practices that preserve diversity across entire regions. As not-
ed above, improving the conservation value of countryside
habitats may not benefit many threatened, forest-restricted
species. Thus, intensifying agriculture and sparing land natu-
ral states may maximize total biodiversity preservation in
some situations [170, 171]. Ultimately, however, the future
of biodiversity conservationwill likely necessitate both formal
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protected areas and wildlife-friendly agriculture and other
human-modified land use types. Taking an explicitly inclusive
view of biodiversity across the countryside forces the recog-
nition of the intrinsic and extrinsic value of the species that co-
inhabit the human realm. This inclusive view allows re-
searchers to shed light on longstanding scientific questions
regarding the distributions of species, address how humanity
has altered these distributions, and ultimately point towards
win-win strategies to conserve nature alongside a burgeoning
human population.
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