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Abstract

Understanding how and why animals use the environments where they occur is

both foundational to behavioral ecology and essential to identify critical habitats

for species conservation. However, some behaviors are more difficult to observe

than others, which can bias analyses of raw observational data. To our knowl-

edge, no method currently exists to model how animals use different environ-

ments while accounting for imperfect behavior-specific detection probability. We

developed an extension of a binomial N-mixture model (hereafter the behavior

N-mixture model) to estimate the probability of a given behavior occurring in a

particular environment while accounting for imperfect detection. We then con-

ducted a simulation to validate the model’s ability to estimate the effects of envi-

ronmental covariates on the probabilities of individuals performing different

behaviors. We compared our model to a naïve model that does not account for

imperfect detection, as well as a traditional N-mixture model. Finally, we applied

the model to a bird observation data set in northwest Costa Rica to quantify how

three species behave in forests and farms. Simulations and sensitivity analyses

demonstrated that the behavior N-mixture model produced unbiased estimates

of behaviors and their relationships with predictor variables (e.g., forest cover,

habitat type). Importantly, the behavior N-mixture model accurately character-

ized uncertainty, unlike the naïve model, which often suggested erroneous effects

of covariates on behaviors. When applied to field data, the behavior N-mixture

model suggested that Hoffmann’s woodpecker (Melanerpes hoffmanii) and Inca

dove (Columbina inca) behaved differently in forested versus agricultural habi-

tats, while turquoise-browed motmot (Eumomota superciliosa) did not. Thus, the

behavior N-mixture model can help identify habitats that are essential to a spe-

cies’ life cycle (e.g., where individuals nest, forage) that nonbehavioral models

would miss. Our model can greatly improve the appropriate use of behavioral

survey data and conclusions drawn from them. In doing so, it provides a valuable

path forward for assessing the conservation value of alternative habitat types.
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INTRODUCTION

Species responses to environmental conditions are most
often assessed by measuring effects on their occurrences or
abundances (e.g., Hatfield et al., 2018; Newbold
et al., 2013). Yet changes in incidence provide little infor-
mation about how species use the environments where
they occur (Gilroy & Edwards, 2017; Ortega-�Alvarez
et al., 2021). For example, a species regularly detected in
agricultural habitats could simply be passing through, as
opposed to actively using agricultural habitats to forage,
reproduce, and complete its life cycle (Vickery et al., 2001).
Variation in the behavioral use of different environments
can have cascading implications for individual fitness and
population persistence (e.g., Luck, 2002; Lyons, 2005). For
example, a dense habitat may not be necessary for an indi-
vidual to survive, but it is still important for population
persistence because it contains the necessary substrates for
reproduction (e.g., nesting, mating). Therefore, changes in
behavior can serve as a warning signal that a population is
in trouble (Berger-Tal et al., 2016), and understanding the
fitness effects of animals behaving differently in different
habitats is critical to conserve species effectively. In con-
trast, if we base costly, lengthy management actions solely
on incidence, without understanding how a species uses
that habitat, we may fail to protect habitats that are essen-
tial to critical phases of the species’ life cycle.

Unfortunately, many behaviors are difficult to observe
(Durso et al., 2011), and the detectability of individuals
often depends on the behaviors they perform (Crowe &
Longshore, 2010). Moreover, the detectability of different
behaviors may change depending on the surrounding
environment. This may be particularly problematic when
changes in behaviors are confounded by changes in their
detection probability, such as when the same covariate
(e.g., vegetation density) influences behaviors and the
probability of detecting both individuals and their behav-
iors. For example, the probability of detecting bird vocali-
zations may be similar between open areas (e.g., farms)
and dense environments (e.g., forests), whereas the proba-
bility of detecting behaviors that are observed visually may
decline. Meanwhile, it is possible that a species performs
behaviors detected visually, such as foraging, more fre-
quently in denser environments. Without accounting for
behavior-specific detection, we would risk falsely conclud-
ing that open environments are more beneficial to this
species because we observe it foraging there more often.
To our knowledge, no method currently exists to model
how different habitats support different behaviors while
accounting for behavior-specific detection probability.

Ecologists have long grappled with the problem of
imperfect detection when modeling the abundance of wild-
life (Hilborn et al., 1976; Kéry & Royle, 2008; Seber, 1982).

Failing to account for variation in detection (e.g., among spe-
cies, observers, habitats) can bias estimates of abundances
(Kellner & Swihart, 2014). One method frequently used to
account for imperfect detection in abundance estimation is
the N-mixture model (Kéry, 2018; Royle, 2004). N-mixture
models estimate abundance and detection using spatially
and temporally replicated surveys where the number of indi-
viduals is counted. They assume that populations are closed,
such that the same number of individuals is present during
each visit to a site, and that all individuals have the same
detection probability. If there is unmodeled heterogeneity in
detection (such as variable detection probabilities between
behaviors), N-mixture models are known to underestimate
abundance (Kéry & Royle, 2015). Therefore, modeling
behavior-specific detection probabilities could potentially
account for behavior-driven heterogeneity (e.g., between
individuals, age-sex classes, populations) in detection.

Given a data set of species observations with spatial
and temporal replication, where behaviors are noted for
all detected individuals, a conceptually straightforward
way to account for behavior-specific detection probabilities
is to extend the N-mixture model to estimate the abun-
dance of each behavior separately, using repeated counts
of behaviors. A species’ total abundance is then the sum of
the abundances of each behavior. This approach allows
each behavior to have its own detection probability that
can be modeled as a function of covariates. It also allows
for modeling of covariate effects on the prevalence of a
given behavior. However, a major challenge with this
method is that the N-mixture model assumes populations
are closed, which may be less probable with behavior-
specific abundances than overall abundances. Specifically,
it is quite possible that, across multiple visits to a single
site, the same number of individuals is present but they
perform different behaviors; we refer to this as a violation
of the behavioral closure assumption.

Here we develop a behavior N-mixture model that
estimates the effects of environmental covariates on
behavior probabilities (i.e., the probability that an indi-
vidual will perform a certain behavior) while accounting
for imperfect detection of individuals and behaviors. This
method adds another conditional layer to the traditional
N-mixture model. Specifically, it estimates the probabili-
ties that individual animals will use one type of habitat
for a behavior (e.g., foraging, vocalizing) while account-
ing for the imperfect and variable detection of those
behaviors. We conduct a simulation study to understand
how variation in the detection, abundance, and violation
of the behavioral closure assumption affects our ability to
estimate relationships between environmental covariates
and behavior probabilities. To assess performance, we
compare our model to a naïve model that estimates
behavior probabilities without accounting for imperfect
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detection, as well as a traditional N-mixture model that
accounts for overall imperfect detection but that esti-
mates neither behavior probabilities nor behavior-specific
detection probabilities. Finally, we apply our model to a
4-year data set of bird surveys in Costa Rica, in which
behaviors (e.g., vocalizing, eating, passive behaviors)
were noted during repeated point counts in agricultural
and forested habitats.

MATERIALS AND METHODS

Formulation of the behavior N-Mixture
model

We extended the N-mixture model framework to quantify
how environmental covariates influence the relative fre-
quency of behaviors performed (behavior probability)
while accounting for variation in detection probability
among different behaviors in different environments
(Kéry, 2018; Royle, 2004). Under certain assumptions,
our new model can also be used as a typical N-mixture
model to estimate abundance, though in other cases
doing so can be problematic (see subsequent discussion).
In typical N-mixture models, the number of individuals
observed (Y) at a site ( j) and a visit (k) is modeled based
on abundance and detection processes such that

Yj,k �Binomial Nj,Pj,k
� �

,

where N is the true number of individuals and P is the
per-individual detection probability. P can be modeled as
a function of site- and visit-specific covariates. Site-
specific abundances, Nj, are modeled as a random count
variable (e.g., with a Poisson probability distribution),
and expected abundance can be modeled as functions of
site-specific covariates. For the behavior N-mixture
model, to model the counts (Y) and proportion (π) of
individuals performing the bth behavior, we modified the
typical N-mixture model such that

Yj,b,k �Binomial N :bj,b,Pj,b,k
� �

N:bj,b �Poisson λj�πj,b
� �

Nj ¼
XB

b¼1

N:bb:

where Yj,b,k is the number of individuals observed per-
forming a certain behavior (b) at a site ( j) and a visit (k),
Pj,b,k is the detection probability that an individual will

perform a certain behavior at a particular site and visit,
N:bj,b is the number of individuals performing a certain
behavior at a site, πj,b is the probability that an individual
will perform a certain behavior at a site, and, λj is the
expected value of the total abundance (NjÞ at a site. Note
that πj,b and N:bj,b are indexed by site and behavior,
which implies closure of relative behavior frequencies
between visits (i.e., assuming the same number of indi-
viduals performs each behavior during each visit).
Expected abundance λj can be modeled as

log λj
� �¼ α0þα0Xj,

where α0 is the intercept and α0 is a vector of coefficients
that are multiplied by the covariates X.

B:pj,b is modeled as a function of covariates using
multinomial logistic regression. For the first behavior,

πj,1 ¼ 1

1þPB
b¼2e

β0bþβ0bZj
,

and for the remaining behaviors,

πj,b ¼ eβ0bþβ0bZj

1þPB
b¼2e

β0bþβ0bZj
:

The first behavior serves as a reference category that the
other behaviors are compared to; any category can be
used as the reference. B is the number of behavior catego-
ries. In the multinomial logistic regression, β0b is a
behavior-specific intercept and β0 is the vector of coeffi-
cients that is multiplied by the covariates Z.

Finally, the detection probability that an individual
will perform a certain behavior at a given site and visit
(Pj,b,k) can be modeled as a function of site- and visit-
specific covariates:

logit Pj,b,k
� �¼ γ0þγ0bVj,

where γ0 is the intercept and γ0 is the vector of behavior-
specific coefficients that are multiplied by the
covariates V.

Simulation study

We evaluated the performance of the behavior N-mixture
model under five combinations of mean expected abun-
dance (λ) and detection probability (P). For each
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scenario, we applied the behavior N-mixture model to
100 sets of simulated observations of behaviors and abun-
dances for one species across 50 sites (indexed by j), with
five visits to each site (indexed by k). In all scenarios,
individuals could perform one of three behaviors (inde-
xed by b), with intercepts of the behavior probabilities
fixed at 0.6, 0.15, and 0.25 (β0 = [0, �1.38, �0.87]). The
intercepts of the behavior probabilities must sum to
1, and the first behavior served as the reference level.
First, we tested model performance with a detection
probability intercept fixed at 0.2 (a realistic value for bird
communities) (Karp et al., 2018) and three levels of abun-
dance intercepts representing 1, 2.7, and 7.4 individuals
per site. Second, we tested model performance with an
abundance intercept fixed at 2.7 individuals per site
(α0 ¼ 1Þ and two additional levels of detection probability
intercepts: 0.5 and 0.8 (γ0 ¼ 0 and 1:38Þ.

In all cases, the abundance intercept α0 was added to
the product of one site-specific covariate X and an abun-
dance coefficient α0. The behavior probability intercept β0
was added to the product of a behavior-specific coeffi-
cient β0b and one site-specific covariate Z for two behav-
iors, while the first behavior served as the reference level.
The number of individuals performing each behavior at
each site and visit was determined using a multinomial
random distribution with size n = Nj and cell probabili-
ties π1:3,j. This case reflects behavioral closure, where the
numbers of individuals performing each behavior at each
site is constant across visits. Finally, we generated detec-
tion probabilities by adding the intercept γ0 and the prod-
uct of a behavior-specific detection coefficient and the
covariate Z. For each replicate, the abundance coefficient
and detection intercept were drawn from a normal distri-
bution with mean 0 and variance 0.25, while the
behavior-specific coefficients were drawn from a normal
distribution with mean 0 and variance 1. We wanted to
explore more of the parameter space of the behavior-
specific coefficients in contrast to abundance and detec-
tion parameters, which we aimed to control for in each
simulation scenario. Site-specific covariates were also
drawn from a normal distribution with mean 0 and vari-
ance 1, so that we did not have to standardize environ-
mental covariates prior to analysis.

Assuming behavioral closure could be problematic in
practice because animals can change behaviors fre-
quently. To explore how the behavior N-mixture model
performs under complete violation of behavioral closure,
we applied it to an additional data set paired with each
simulated data set described earlier, where the number of
individuals performing each behavior was resampled
from the same multinomial distribution for each visit.
This way, the number of individuals was constant across
visits, but the number of them engaging in each behavior

could change. Next, to understand model performance
under intermediate levels of violation of the behavioral
closure assumption, we applied the behavior N-mixture
model to more paired data sets where the numbers of
individuals performing each behavior each visit were
determined by resampling 0%, 25%, 50%, 75%, and 100%
of the total abundance while holding the detection inter-
cept at 0.2 and abundance intercept at 2.7 (see earlier dis-
cussion). When the behavioral closure assumption was
violated, we expected abundance to be overestimated and
detection probability to be underestimated. This is
because when an individual is observed performing dif-
ferent behaviors between visits, it contributes to overall
abundance estimates multiple times.

Alternative models

To compare how the behavior N-mixture model esti-
mated total abundance to an alternative model, we
applied a traditional N-mixture model to every simulated
data set where we retained covariates for estimating
abundances and detection probabilities. Under behav-
ioral closure, we expected the traditional N-mixture
model to underestimate abundance due to unmodeled
variation in detection probabilities. When behavioral clo-
sure was violated, we expected the behavior N-mixture
model to produce more biased abundance estimates than
the traditional N-mixture model.

We also sought to compare the behavior N-mixture
model’s estimates of behavior parameters to a naïve
model that did not account for imperfect detection. To do
so, we applied a multinomial regression model to every
simulated data set, where we aggregated behavioral
observations across visits for each simulation replicate.
This was the most straightforward way to model behavior
frequencies without accounting for imperfect detection.
We expected the naïve model to produce biased relation-
ships with covariates, especially when the same covariate
affected detection and behavior.

We assessed model estimates for abundance (N, α0,
α0), detection (Pj,b,k,γ0, γ

0
bÞ, and behavior (πj,b, β0, β0b)

parameters. For each replicate, we calculated the abso-
lute bias of the posterior means and 95% Bayesian credi-
ble interval (BCI) coverage, which represents how often
the range between the 2.5th and 97.5th percentiles of
the posterior distribution contains the true value. We
compared bias and BCI coverage across levels of mean
detection, abundance, and violation of behavioral clo-
sure. We also compared bias and BCI coverage of
parameters between the behavior N-mixture model, tra-
ditional N-mixture model, and naïve multinomial
regression model.

4 of 14 KE ET AL.



Implementation

We implemented all models in R version 4.0.0 using the
nimble package, which runs Markov chain Monte Carlo
(MCMC) algorithms (de Valpine et al., 2017; RC
Team, 2013). For each simulation replicate, we ran three
chains starting at random initial values and 5000 burn-in
iterations. We included 150,000, 100,000, and 50,000 burn-
in iterations and thinning rates of 75, 50, and 25 for the
behavior N-mixture, traditional N-mixture, and naïve mul-
tinomial regression models, respectively. We treated
models as having converged if all chains for abundance,
detection probabilities, behavior probabilities, and inter-
cept and slope parameters had Gelman–Rubin statistics
≤1.1 (Gelman et al., 2004). If any chains did not converge,
we excluded the entire replicate (i.e., all models fit to that
data set) from further analysis.

Case study: Effects of agriculture on bird
behavior in northwest Costa Rica

We applied the behavior N-mixture model to behavioral
observations of Hoffmann’s woodpecker (Melanerpes
hoffmannii), Inca dove (Columbina inca), and turquoise-
browed motmot (Eumomota superciliosa) in adjacent
agricultural and forested sites in northwest Costa Rica.
All species are regularly observed both in forest and
agricultural habitats; our objective was to determine
whether species changed behavior frequencies between
habitats.

At 20 forest-adjoining farms and five protected areas,
birds were surveyed at six sites each, half in agricultural
sites and half in forest (N = 150 sites total). At each site,
the same expert observer (J. Zook) surveyed all birds seen
or heard in 20-min, 50-m fixed-radius point counts in May–
July from 2016 to 2019. Half of the point counts were sam-
pled three times within a 1-week period, and the other half
were surveyed once to increase spatial replication while still
being able to estimate detection probabilities. One farm or
protected area (six sites) was surveyed each day, beginning
at sunrise and continuing for �5 h. The observer recorded
species identity, number of individuals observed, time of
day, and ambient noise, which we considered to be noise
levels that were above typical background noises and were
thought by the observer to interfere with his ability to
detect bird vocalizations. Each observation of a species was
associated with one of 32 behaviors (Appendix S1:
Table S2) that we classified into three categories: vocalizing,
eating/foraging, and other. When an individual performed
more than one behavior during a point count (10.5% of
observations), we randomly selected one of the behaviors
from those recorded by the observer.

We modeled the annual abundance of each species at
each site as a function of an intercept, a coefficient multi-
plied by the fraction of forest cover within 50 m, and ran-
dom effects for farm, point, and year. We modeled
behavior probability as a function of a behavior-specific
intercept and a behavior-specific coefficient multiplied by
a binary habitat covariate (agriculture vs. forest). We
modeled detection probability as a function of an inter-
cept, a behavior-specific coefficient multiplied by a binary
noise variable (no noise vs. noise, e.g., machinery, cica-
das), a behavior-specific coefficient multiplied by the
binary habitat covariate, and a coefficient multiplied by
the time of day.

We considered the composition of behaviors to differ
between habitats when the BCIs for any behavior coeffi-
cients did not include zero. Because the values of behavior
coefficients are relative to the reference behavior, their
values do not necessarily reflect how a behavior probability
differs between habitats. Thus, we considered a behavior
probability to be significantly different between forested
and agricultural habitats when the BCI for the predicted
difference in the behavior probability between habitats did
not include zero. We compared estimates of behavior prob-
abilities and coefficients to the naïve model and compared
estimates of abundance to the traditional N-mixture model
(Appendix S1). For all models, we ran three chains of 5000
burn-in iterations and 150,000 post-burn-in iterations and
thinned chains by 75. We implemented models in R ver-
sion 4.0.0 using the nimble package and checked for con-
vergence as described earlier (de Valpine et al., 2017; RC
Team, 2013).

RESULTS

Model convergence

Chains for every parameter within the behavior N-mix-
ture, traditional N-mixture, and naïve models converged
for 60%–85% of the simulation replicates when the detec-
tion intercept was 0.2 and 0.5 across all levels of abun-
dance. When the detection intercept was 0.8, all chains
converged in only 14% of replicates (Appendix S1:
Table S1). When we adjusted the levels of violation of the
behavioral closure assumption, all chains from 15 models
(three models applied to five levels of closure violation)
converged in 23% of replicates.

Behavior parameters

Overall, we found that the behavior N-mixture model
better estimated behavior probabilities and effects of
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covariates (e.g., land-use type) on behavior compared to
the naïve model. Specifically, the mean estimate of
behavior probabilities was 0.96–3.34 times more likely to
be less biased under the behavior N-mixture model than
under the naïve model across scenarios (Appendix S1:
Table S3). When data met the behavioral closure assump-
tion, BCIs from the behavior N-mixture model captured
the true value of the behavior probabilities 90%–95% of
the time across all scenarios of abundance and detection
(Table 1). The naïve model, however, only captured the
true value 42%–74% of the time.

The mean absolute bias of estimates of behavior prob-
ability and behavior probability coefficients (i.e., the
effect of a covariate on each behavior, β0b) from the
behavior N-mixture model were small (�0.001 to 0.03
and �0.01 to 0.21, respectively; true β0b values ranged
from �4.11 to 3.06) (Table 1). When the detection inter-
cept was 0.2 or 0.5, the behavior N-mixture model’s
BCI coverage of the behavior probability coefficients
was 91%–95%. However, when mean detection was
0.8, the behavior N-mixture model’s BCI coverage
was only 82% (Appendix S1: Table S3). Again, cover-
age of behavior probability coefficients was always
higher for the behavior N-mixture model than the
naïve model (Figure 1). Further, the behavior N-
mixture model’s mean estimate of behavior probabil-
ity coefficients was 1.33–6.14 times more likely to be
less biased than the naïve model (Appendix S1:
Table S3). For behavior probabilities and coefficients,
BCIs from the behavior N-mixture model were about
50% wider than BCIs from the naïve model, which
clearly underestimated uncertainty. Therefore, the
better coverage of the behavior N-mixture model can
be attributed to a combination of both lower bias
and wider BCIs.

Abundance parameters

Under behavioral closure, the mean absolute bias of the
behavior N-mixture model’s estimate of abundance (N)
ranged from 0.03 to 0.22 (true values ranged from 0 to
47, with three outlier values of 88) across all scenarios
(Appendix S1: Table S4). The mean absolute bias of the tra-
ditional N-mixture model’s abundance estimate ranged
from �1.23 to �0.02 across scenarios (Appendix S1:
Table S6). The behavior N-mixture model’s BCI coverage of
abundance was 98%–99% (S1: Table S4), and across scenar-
ios, the behavior N-mixture model’s estimate of abundance
was 1.17–2.13 times more likely to be less biased than the
traditional N-mixture model (Appendix S1: Table S3).

The mean absolute bias of the behavior N-mixture
model’s estimate of the abundance coefficient (α0) ranged
from �0.03 to 0.02 across scenarios, which was similar to
that from the traditional N-mixture model (�0.02 to 0.02)
(Appendix S1: Tables S3 and S6). The behavior N-mixture
model’s BCI coverage of the true value of α0 was 84%–
100%, and the highest coverage occurred when the detec-
tion intercept was 0.2 (Appendix S1: Table S4). The
behavior N-mixture model’s mean estimate of the abun-
dance coefficient was 0.59–3.35 times more likely to be
less biased than the traditional N-mixture model across
trials (Appendix S1: Table S3), so for some simulation
scenarios, the behavior N-mixture model resulted in
more bias than the traditional N-mixture model.

Detection parameters

Under behavioral closure, mean absolute bias of the behav-
ior N-mixture model’s estimate of detection probability
(Pj,b,k) ranged from �0.01 to 0.00, and the BCI coverage

TAB L E 1 Absolute bias for behavior probability coefficients

Parameter Measure
Detection 0.2,
abundance 2.7

Detection 0.5,
abundance 2.7

Detection 0.8,
abundance 2.7

Detection 0.2,
abundance 1

Detection 0.2,
abundance 7.4

Behavior
probability
coefficient
β0b

Mean absolute bias 0.21 (�0.04) 0.06 (�0.03) 0.03 (�0.10) 0.07 (�0.04) �0.01 (0.25)

2.5th and 97.5th
percentiles,
absolute bias

�1.28, 1.56
(�3.34, 1.88)

�0.63, 0.82
(�2.03, 1.89)

�0.74, 0.59
(�1.65, 2.00)

�1.14, �0.94
(�2.16, 1.58)

�0.70, 0.62
(�1.38, 1.60)

Behavior
probability
B.pj,b

Mean absolute bias �0.001 (0.01) 0.008 (0.02) 0.003 (0.02) 0.03 (0.03) 0.00 (�0.01)

2.5th and 97.5th
percentiles,
absolute bias

�0.17, 0.19
(�0.29, 0.30)

�0.12, 0.12
(�0.33, 0.33)

�0.15, 0.13
(�0.36, 0.32)

�0.28, 0.27
(�0.36, 0.35)

�0.11, 0.12
(�0.27, 0.24)

Notes: Mean and 2.5th and 97.5th percentiles of absolute bias, and 95% Bayesian credible interval coverage across replicates where all chains converged

(Appendix S1: Table S1) for each scenario (defined by input values of mean detection and abundance) for the behavior N-mixture model from the simulation
study. The first values in each cell correspond to when the behavioral closure assumption was met, and the values in parentheses correspond to the model
under complete violation of behavioral closure, such that 100% of the behaviors were resampled on each visit. The first column contains the baseline levels of
the simulation, where we fixed mean detection at 0.2 and mean abundance at 2.7.
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of the true value was 88%–97% (Appendix S1: Table S4).
The mean absolute bias of the detection probability coef-
ficient (γ0b) ranged from �0.10 to 0.07 (true values ranged
from �3.90 to 2.67) (Appendix S1: Table S4), and the BCI
coverage of the true value was 90%–96%. The worst-
performing scenario for detection parameters was one in
which the mean detection probability was 0.8
(Appendix S1: Table S4). There was no alternative model
that estimated behavior-specific detection probabilities
for comparison because the naïve model did not estimate
detection probabilities and the traditional N-mixture
model did not estimate behavior-specific parameters.

Violation of behavioral closure assumption

When the behavioral closure assumption was violated,
the behavior N-mixture model still outperformed the
naïve model in estimating behavioral frequencies (and
effects of covariates on behaviors) but performed worse
than the traditional N-mixture model at estimating abun-
dances. Specifically, when the behavioral closure

assumption was fully violated (i.e., 100% of the behaviors
resampled on each visit), the mean absolute bias of
behavior probability coefficients (β0b) for the behavior N-
mixture model ranged from �0.10 to 0.25 (Appendix S1:
Table S4). Although the range of absolute bias increased
when the behavioral closure assumption was violated,
BCI coverage for the behavior N-mixture model (74%–
91%) was still much greater than the naïve model (28%–
67%). The only scenario in which the BCI coverage for
the naïve model was greater was one in which the detec-
tion intercept was 0.8 (Figure 1). With violation of the
behavioral closure assumption, the variance of the bias of
behavior and detection parameters increased, but the
mean absolute bias was close to zero (Appendix S1:
Table S4). Across intermediate levels of behavioral clo-
sure violation, there was little variation in the BCI cover-
age of behavior probability coefficients (Figure 2).

With increasing violation of the behavioral closure
assumption, bias in total abundance (N) became increas-
ingly positive, and bias of detection probability (P)
became increasingly negative (Figure 3; Appendix S1:
Table S4). At low levels of behavioral closure violation,

F I GURE 1 (a) Estimated versus true input values and 95% Bayesian credible intervals (BCIs) for β0b (effect of a covariate on the

probability that an individual will perform a behavior) based on a simulation study exploring the effectiveness of the behavior N-mixture

model across varying levels of detection and abundance. Dark blue points and lines indicate BCIs that did not capture the true simulated

values; light blue points and lines indicate BCI coverage of true values. (b) Percentage of 95% BCIs that captured true input values for β0b
across all simulation replicates at varying levels of mean detection. The mean abundance is fixed at 2.7 and the blue lines mark 0.95.

(c) Percentage of 95% BCIs that capture simulated values for β0b across all iterations at varying levels of mean abundance. The mean

detection is fixed at 0.2 and the blue lines mark 0.95. Only replicates where all chains converged were used for analysis (Appendix S1:

Table S1)
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such as when 25% of the behaviors were resampled, the
mean absolute bias of N was still rather low (i.e., 0.51;
Figure 3; true values ranged from 0 to 13). However, at
higher levels of mean abundance, mean absolute bias
increased (Appendix S1: Table S4). Meanwhile, the tradi-
tional N-mixture model underestimated N on average—
mean absolute bias ranged from �0.27 to �0.15 across all
levels of behavioral closure violation. When the behav-
ioral closure assumption was violated, the mean absolute

bias of the behavior N-mixture model’s estimates of the
abundance and detection coefficients (α0 and γ0) were not
consistently positive or negative, ranging from �0.01 to
0.05 and �0.10 to 0.07, respectively (Appendix S1:
Table S4). In addition, when mean detection was 0.2 or
0.5, the behavior N-mixture model’s estimates of α0 were
1.04–2.44 times more likely to be less biased than the
naïve and traditional N-mixture models across replicates
(Appendix S1: Table S3).

F I GURE 2 Percentage of 95% Bayesian credible intervals that captured the simulated values for β0b (i.e., effect of a covariate on
behaviors) across all replicates where all chains converged (Appendix S1: Table S1) of the simulation study where the level of the violation of

the behavioral closure assumption (i.e., percentage of data resampled) varied from 0% to 100%. The blue lines mark 0.95

F I GURE 3 Percentage of 95% Bayesian credible intervals that captured the simulated values for N and the mean absolute bias of

N across all replicates where all chains converged (Appendix S1: Table S1) of the simulation study where the level of the violation of the

behavioral closure assumption (i.e., percentage of data resampled) varied from 0% to 100%. The blue lines mark 0.95
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Application: Bird behavior variation
between forested and agricultural habitats

We estimated the effects of land use on the probabilities
of eating and vocalizing for three focal species using the
behavior N-mixture model and a naïve model. In some
cases, predictions from the behavior N-mixture and naïve
model largely aligned. The behavior N-mixture and naïve
models both estimated higher probabilities of eating in
agricultural habitats and vocalizing in forest for Inca
dove, a species often found foraging in agricultural fields
(Mueller, 2020), though they differed in which behavior
coefficients were statistically significant (Figure 4). In
other cases, the models produced very distinct results.
For example, for Hoffmann’s woodpecker, a species
known to occupy both forested and open areas (Stiles &
Skutch, 1989), the behavior N-mixture model only found
that the probability of the other behavior was signifi-
cantly higher in agricultural land than in forest, whereas
the naïve model suggested that the woodpecker was less
likely to vocalize and more likely to perform the other
behavior category in agricultural land than in forest
(Figure 4). Similarly, for turquoise-browed motmot, a
species that has been observed foraging and nesting in

both forested and anthropogenic landscapes (Snow &
Kirwan, 2020), the behavior N-mixture model did not
find significant effects of land use on behavior; however,
the naïve model indicated a marginally significant higher
probability of vocalizing and lower probability of other in
forest compared to agricultural habitats (Figure 4), where
the BCI bordered 0.00. Additionally, the behavior N-
mixture model suggested that loud noises reduced the
likelihood of detecting vocalizations of all three species,
Hoffmann’s woodpecker was harder to detect later in the
day, and forest cover increased the likelihood of observ-
ing turquoise-browed motmots eating (Appendix S1:
Figure S1). The behavior N-mixture model also suggested
that forest cover increased the abundance of Hoffmann’s
woodpecker and turquoise-browed motmot but not
Inca dove.

DISCUSSION

We developed and applied a novel hierarchical model to
assess shifts in animal behavior across environments.
Data on how animals behave can be used to understand
how local management activities and global changes

F I GURE 4 Top row: Behavior N-mixture model and naïve model estimates and 95% Bayesian credible intervals for the effect of land

use (where forest = 1 and agriculture = 0) on the probability of eating and vocalizing for (a) Hoffmann’s woodpecker, (b) turquoise-browed
motmot, and (c) Inca dove. Bottom row: Behavior N-mixture model and naïve model predictions of probabilities that an individual will

perform each behavior in each habitat type. Significant differences between habitats according to only the naïve model are marked with an

empty triangle; significant differences according to both models are marked with a solid triangle
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affect species, quantify habitat suitability (e.g., by identi-
fying potential source/sink habitats), and identify conser-
vation interventions (Ortega-�Alvarez et al., 2021). Indeed,
behavior data can reveal trends that census data cannot.
For example, urban parks may appear to be high-quality
habitat for wildlife based on the presence and abundance
of individuals, even as human activity reduces the avail-
ability of foraging resources, thereby decreasing fitness
and increasing the probability of future extirpations
(Jokimäki et al., 2011). Most studies of animal behavior,
however, rely on intensively monitoring animals
(e.g., Luck, 2002; Tremblay et al., 2005) and are thus lim-
ited to few individuals because they are labor-intensive
and restricted to certain species (e.g., those that can carry
tracking equipment).

Here we present a novel method that allows
researchers to leverage survey-type behavioral data while
accounting for imperfect detection, thereby enabling sci-
entists or practitioners to analyze behaviors for many
individuals of multiple species and better assess the con-
servation value of alternative habitat types. When the
behavioral closure assumption was met, our behavior N-
mixture model produced unbiased estimates of behavior
probabilities, their relationships with predictor variables,
and abundance, even when the same covariate affected
both behavior and detection probability. When the
behavioral closure assumption was violated, the behavior
N-mixture model still produced unbiased estimates of
behavior probabilities and the effects of covariates on
behaviors, but it overestimated total abundance. Further,
the behavior N-mixture model had better BCI coverage
than the naïve model when estimating behavior probabil-
ities in all scenarios, except when the behavioral closure
assumption was completely violated and the mean detec-
tion probability was high. (Note: Figure 5 provides a deci-
sion tree of which models to choose in different
circumstances.)

Behavior parameters

The behavior N-mixture model produced unbiased esti-
mates of covariates affecting behavior probability and
accurate estimates of uncertainty. As mentioned, the only
scenario in which the behavior N-mixture model per-
formed worse than the naïve model was when mean
detection probability was 0.8 and the behavioral closure
assumption was violated. In reality, a mean detection
probability of 0.8 or greater is rare (Kéry, 2018; Kellner &
Swihart, 2014), and if detection probability is near-per-
fect, a naïve model may be sufficient (Figure 5). While
the naïve model is a simpler alternative that does not
make assumptions about closure, the behavior N-mixture
model produced similar or less biased estimates of behav-
ior parameters in all cases where there was behavioral
closure and at mean detection probabilities of 0.5 or
lower when the behavioral closure assumption was vio-
lated (Appendix S1: Table S3).

A critical disadvantage of the naïve model is that it
underestimated uncertainty, causing it to make incorrect
inferences about how covariates affected behaviors. In the
most egregious cases, the naïve model returns significant
results, suggesting that a behavior increases in probability
in an environment, when in fact it decreases. For example,
under behavioral closure, when the naïve model was
applied to the scenario with a mean detection probability
of 0.2 and mean abundance of 2.7 (Figure 1a), 14% of the
significant coefficients affecting behavior (i.e., where BCI
did not include 0) were in the opposite direction of the true
value. This type of error could be problematic if naïve
model results were applied to management decisions
because we might fail to protect essential habitats for a spe-
cies’ life cycle and potentially protect nonimportant habi-
tats instead. In contrast, the behavior N-mixture model did
not estimate any statistically significant coefficients affect-
ing behavior in the wrong direction in the same scenario.

F I GURE 5 Decision tree to help determine when behavior N-mixture, naïve, and traditional N-mixture models should be used to

estimate abundance and behavioral frequencies from wildlife survey data across various scenarios of imperfect detection and population

closure
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Abundance parameters

The behavior N-mixture model produced unbiased esti-
mates of abundance parameters, as well as accurate esti-
mates of uncertainty, when the data conformed to the
behavioral closure assumption. In this case, it out-
performed the traditional N-mixture model, which
tended to underestimate abundance. When the behav-
ioral closure assumption was violated, however, the
behavior N-mixture model performed poorly (Figure 3),
which we expected based on what is known about N-
mixture models (Rota et al., 2009). Therefore, when the
behavioral closure assumption is violated, the behavior
N-mixture model should not be used to estimate abun-
dances or detection probabilities. However, when mean
detection probability is around 0.5 or lower, the behavior
N-mixture model can still be used to estimate coefficients
affecting abundance and detection (Table 1).

When the behavioral closure assumption is violated,
the traditional N-mixture model can still be used to esti-
mate abundance and detection in most cases. Although
there was a negative bias in abundance estimates, BCI
coverage was at least 93% across all scenarios. Bias was
greatest when mean abundance was high (average of 7.4
individuals per site), when the traditional N-mixture
model consistently overestimated detection and under-
estimated abundance (Appendix S1: Table S6).

In practice, it may be hard to determine whether the
behavioral closure assumption is violated, so caution is
warranted before using the behavior N-mixture model to
estimate abundances. To assess behavioral closure, users
could potentially contrast abundance estimates under
both models and, if similar, just use the behavior
N-mixture model. Overall, we recommend using the tra-
ditional N-mixture model to estimate abundances but the
behavior N-mixture model to measure changes in behav-
ior (Figure 5).

Bird behavior variation in northwest
Costa Rica

The behavior N-mixture model produces important
insights into the effects of environmental conditions on
behaviors. As illustrated in the simulation study, these
effects can be incorrectly determined when not account-
ing for imperfect and varying detection.

Among our case studies, the turquoise-browed mot-
mot and Hoffmann’s woodpecker highlight scenarios
where the behavior N-mixture model suggests that birds
do not behave differently in forested and agricultural
habitats, while the naïve model suggests that they
do. This is likely because the naïve model underestimates

the uncertainty around coefficients (as seen in the simu-
lation study), and the detectability of some of these
behaviors differed between habitats (Appendix S1:
Figure S1). In contrast, the Inca dove highlights that
sometimes both models can produce consistent estimates
of important effects on behaviors. This may occur when
there are large differences in behaviors performed
between habitats that are apparent even without cor-
recting for detection.

The results of the behavior N-mixture and naïve
models seemed to differ the most when there was more
heterogeneity in the effects of habitat on the detection
probability of each behavior (Figure 4; Appendix S1:
Figure S1). That is likely because the naïve model con-
founds effects of habitat on the detection of behaviors
with effects on the behaviors themselves. For example,
for the turquoise-browed motmot, the naïve model likely
estimated a larger effect of forest on the probability of
vocalizing than the behavior N-mixture model because it
did not account for the fact that vocalizing is relatively
easier to detect in forest than foraging, which becomes
more difficult to see when there is dense cover
(Appendix S1: Figure S1). Thus, a potential consequence
of using the naïve model is falsely concluding that
turquoise-browed motmots vocalize more frequently in
forest. Because vocalization is essential for reproduction,
this could lead to incorrect conclusions about the impor-
tance of forest habitat for reproduction. Indeed,
turquoise-browed motmots are known to breed in
human-dominated areas and even exploit nesting oppor-
tunities created by human infrastructure (Snow &
Kirwan, 2020). In contrast, for Hoffmann’s woodpecker,
the effects of habitat on detection probability of each
behavior were near zero (Appendix S1: Figure S1), likely
because the foraging behavior of Hoffmann’s woodpecker
is often audible. Because habitat did not have a large
effect on detection probability, the behavior N-mixture
and naïve models produced similar coefficient estimates
(Figure 4). More generally, this suggests that our model is
especially critical in scenarios where there is heterogene-
ity in the detection probabilities of different behaviors
and their relationships with the environment. For exam-
ple, when conducting visual surveys of amphibians, it is
important to account for the variation in detection proba-
bility depending on the activity level of individuals
(Hammond et al., 2021).

The behavior N-mixture model provided useful infor-
mation on how birds utilize different habitats. For the
turquoise-browed motmot and Hoffmann’s woodpecker,
the behavior N-mixture model estimated a positive effect
of forest cover on abundance, but no significant differ-
ences in the probability of eating and vocalizing between
habitats (Appendix S1: Figure S1 and Table S4). This
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implies that there may be higher densities of individuals
in more forested habitats, but individuals have similar
probabilities of eating and vocalizing in forested and in
agricultural habitats. This could mean that these species
indeed perform important behaviors for their life history
in agricultural habitats but that forested habitat can sup-
port more individuals performing these key behaviors. In
contrast, the Inca dove was estimated to eat more and
vocalize less in agricultural habitats than in forest. This
makes biological sense because they primarily eat seeds
from grains, weeds, and grasses, which are more abun-
dant in agricultural habitats (Johnston, 1960). Interest-
ingly, the behavior N-mixture model did not find an
effect of forest cover on abundance. This implies that
agricultural habitats provide better foraging resources for
the Inca dove than forest and that certain types of agri-
culture may boost populations of Inca doves. Without
accounting for behaviors, managers may assume forested
and agricultural habitats are equally beneficial for Inca
doves, while in reality, agricultural habitats support more
foraging resources. Thus, the behavior N-mixture model
can add insights to abundance information that could
lead to novel conservation strategies and ecological
understanding, for example, by identifying where ani-
mals obtain resources to survive and reproduce.

Limitations

There are several limitations to applying the behavior N-
mixture model in practice. First, there is currently no
method to determine whether data meet the behavioral
closure assumption. A potential method to measure the
degree of behavioral closure is to model the abundance of
each behavior category separately using an N-mixture
model that allows for temporary emigration (Chandler
et al., 2011). An animal switching behaviors between
visits could result in a higher estimate of the probability
of temporary emigration that indicates greater violation
of the behavioral closure assumption, but we have not
explored this further. Based on our simulation, another
sign of behavioral nonclosure could be when estimates of
abundance from the behavior N-mixture model are con-
sistently higher than estimates from a traditional N-
mixture model. An issue we did not explore is that not
only may the behaviors performed differ between visits,
but the probabilities of behaviors an individual will per-
form could change across visits, which could worsen the
violation of the closure assumption.

Finally, all model chains converged in over 50% of the
simulation trials except for when mean detection was 0.8,
when there were often convergence issues. The reasons
for nonconvergence of chains were unclear. For

abundance estimates that did not converge, the chains
were often at zero most of the time, with a few nonzero
values. For other parameters that did not converge, the
chains appeared to be in different locations of parameter
space. Splitting observations into behavior classes, as is
necessary for the behavior N-mixture model, leads to
sparse data, and increasing the number of observations
could improve model convergence. Because of this, we
chose frequently observed species and behaviors for our
case study, and this model would work best for animals
and behaviors that are more easily detected so that there
are sufficient data to estimate detection probabilities. For
example, in a camera trap study of mammals, it would
likely be difficult to detect and analyze reproductive
behaviors but easier to observe foraging behaviors (Abu
Baker et al., 2015). A useful extension of the behavior N-
mixture model could be to develop it into a multispecies
community model so that behaviors of many species
could be analyzed when data are sparse (Ovaskainen &
Soininen, 2011).

CONCLUSIONS

Measuring behavior is important for understanding the
ecology and conservation of species because behavioral
changes are often an animal’s first response to human-
induced environmental changes (Wong & Candolin, 2015).
The behavior N-mixture model advances the study of
behavior because it accurately estimates behavior probabili-
ties and the effects of covariates on behavior probabilities
using observational surveys. In doing so, the model facili-
tates a low-cost method to monitor many individuals’
behavior changes simultaneously. Under the behavioral clo-
sure assumption, the model can also be used to estimate
abundance by modeling heterogeneity in detection between
behaviors, though when the behavioral closure assumption
is violated, it should not be used for abundance (Figure 5).
Behavior-driven heterogeneity in detection is likely present
in many taxa, and information on individual behavior can
be obtained from many different survey types beyond the
point-count data analyzed in our case study (e.g., camera
traps for mammals, transects/area searches for
herpetofauna) (Burton et al., 2015). Thus, scientists should
attempt to collect behavioral observations and incorporate
them into analyses whenever possible.
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