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Abstract
Aim: As climate change increases the frequency and severity of droughts in many 
regions, conservation during drought is becoming a major challenge for ecologists. 
Droughts are multidimensional climate events whose impacts may be moderated by 
changes in temperature, water availability or food availability, or some combination 
of these. Simultaneously, other stressors such as extensive anthropogenic landscape 
modification may synergize with drought. Useful observational models for guiding 
conservation decision-making during drought require multidimensional, dynamic rep-
resentations to disentangle possible drought impacts, and consequently, they will re-
quire large, highly resolved data sets. In this paper, we develop a two-stage predictive 
framework for assessing how drought impacts vary with species, habitats and climate 
pathways.
Location: Central Valley, California, USA.
Methods: We used a two-stage counterfactual analysis combining predictive linear 
mixed models and N-mixture models to characterize the multidimensional impacts of 
drought on 66 bird species. We analysed counts from the eBird participatory science 
data set between 2010 and 2019 and produced species-  and habitat-specific esti-
mates of the impact of drought on relative abundance.
Results: We found that while fewer than a quarter (16/66) of species experienced 
abundance declines during drought, nearly half of all species (27/66) changed their 
habitat associations during drought. Among species that shifted their habitat asso-
ciations, the use of natural habitats declined during drought while use of developed 
habitat and perennial agricultural habitat increased.
Main Conclusions: Our findings suggest that birds take advantage of agricultural and 
developed land with artificial irrigation and heat-buffering microhabitat structure, 
such as in orchards or parks, to buffer drought impacts. A working lands approach that 
promotes biodiversity and mitigates stressors across a human-induced water gradient 
will be critical for conserving birds during drought.
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1  |  INTRODUC TION

The frequency of hot, dry periods constituting ecological drought is 
increasing in many parts of the globe (Crausbay et  al., 2017, 2020; 
Dai,  2013; Diffenbaugh et  al.,  2015; Vicente-Serrano et  al.,  2020). 
Conservation management during drought requires careful study, as 
ecological impacts are multifaceted and species- and habitat-specific. 
Reduced precipitation during drought can impact wildlife directly 
through water stress-induced mortality or indirectly by altering the 
availability of food resources (Cahill et al., 2013). When high tempera-
tures and dry periods occur simultaneously, synergistic impacts occur, 
especially increased cooling costs in the form of higher water or food 
requirements (Cahill et al., 2013; Kearney et al., 2009; Mantyka-Pringle 
et al., 2012; Riddell et al., 2019, 2022). Ultimately, a species' vulnera-
bility to drought is a combination of its level of exposure (the degree 
to which regional climatic change is experienced by individuals of the 
species) and its sensitivity (the degree to which a species' abundance 
changes per unit change in exposure to drought) (Williams et al., 2008).

Previous studies have established that extreme drought can have 
a major impact on bird abundance (Albright et  al.,  2010a, 2010b; 
Bennett et al., 2015; Mac Nally et al., 2009; Nimmo et al., 2016; Prugh 
et al., 2018; Selwood et al., 2018). A variety of mechanisms explain-
ing which species decline, and where, have been investigated in iso-
lation and in tandem. Certain habitats, especially natural ones, have 
been shown to promote species resilience via increased availability 
of food or microhabitat (Bennett et  al.,  2015; George et  al.,  1992; 
Jackson et al., 2016; Nimmo et al., 2016; Riddell et al., 2022). Likewise, 
species traits may influence drought sensitivity. Birds' cooling costs 
correlate with body mass, so larger-bodied birds may be more sensi-
tive to water deficits (Riddell et al., 2019); on the other hand, smaller-
bodied birds experience greater relative evaporative water loss, so 
extreme heat might more strongly impact smaller species (Albright 
et  al.,  2017). Trophic niche may determine sensitivity to indirect ef-
fects of drought, as the availability of food in response to drought 
changes differently in different habitats for herbivores and carnivores 
(Prugh et al., 2018). Resource pressure may lead to density-dependent 
relationships between drought and bird abundance (Cady et al., 2019; 
Prugh et  al.,  2018). Behavioural plasticity and mobility may play a 
role in structuring sensitivity; for example, migratory species may 
have greater spatial flexibility in choosing breeding sites but may be 
more phenologically restricted (Furnas & McGrann, 2018; McGrann 
& Furnas, 2016). The timing of drought events in relation to the breed-
ing season may moderate which species are more exposed (Riggio 
et  al.,  2023). Species with more suitable habitat may also be better 
equipped to seek out new territory during drought.

Habitat composition and structure both moderate the extent 
to which birds are affected by climatic extremes. The availability 
of resources, including water, varies differently during drought in 
different habitats within a region, and diversity in habitat struc-
ture can allow animals to moderate exposure to extreme heat by 
using microclimates. The role of human-modified habitat in moder-
ating species' exposure to drought is especially difficult to predict. 
Human modification and temperature increases are likely to interact 

in their impacts on species. Human-modified habitats tend be more 
open with less microhabitat complexity, leading to more thermal 
variation. As a result, species may be more sensitive to climate ex-
tremes, including drought, in human-dominated landscapes (Lauck 
et al., 2023). Evidence suggests that human-modified habitat tends 
to support species that are further from their thermal limits (Williams 
& Newbold,  2020). Agricultural lands support smaller populations 
than natural lands, especially during hot periods, and especially for 
less drought-tolerant species (Hendershot et al., 2020; Williams & 
Newbold, 2020, 2021). Species that are more sensitive to drought 
may become more vulnerable to habitat degradation as the avail-
ability of natural lands decreases (Travis, 2003). On the other hand, 
human activity may buffer smaller-scale climate impacts on heavily 
used lands by providing artificial sources of water in agricultural and 
domestic settings. Understanding how species respond to drought 
in heavily modified landscapes requires a holistic modelling frame-
work that considers interacting effects of habitat type and drought.

In this paper, we investigated the impact of droughts on birds' 
abundances and their relative use of different habitats in the Central 
Valley ecoregion in California, USA. Like much of western North 
America, this region has experienced a number of severe droughts 
in recent decades (Diffenbaugh et al., 2015) and contains a wide va-
riety of human-modified and natural habitats, making it a relevant 
study system. We characterized changes in counts of 66 common 
Central Valley birds from 2010 to 2019 reported to the participatory 
science platform eBird, taking advantage of the density of eBird ac-
tivity to achieve a high degree of spatiotemporal resolution. Using 
N-mixture models and linear mixed models, we asked (1) whether 
each of 66 species' overall abundance changed with drought sever-
ity, and whether those overall changes were related to species traits; 
(2) whether the effect of drought on each species varied meaning-
fully between habitat types; and (3) which individual climate or envi-
ronmental variables were responsible for overall species abundance 
changes during drought.

2  |  METHODOLOGY

2.1  |  Study region

Comprising the Sacramento Valley in the north and the San Joaquin 
valley in the south, the Central Valley is a predominantly developed 
and agricultural system with remnant riparian and natural grassland 
habitat. Despite the relative lack of unmodified habitat, the Valley 
serves as an important breeding habitat for many birds and a migra-
tory habitat for more (DeLuca et  al., 2021). Climate change is ex-
pected to increase the frequency of extreme droughts in California 
as the probability of co-occurring dry and warm periods increases 
(Diffenbaugh et  al.,  2015), so understanding birds' responses to 
drought in this area is crucial for their conservation. This region has 
a high density of eBird sampling activity spread across a variety of 
habitats and climatic conditions. It has experienced multiple periods 
of severe drought and non-drought in recent years (Figure 1). This 
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combination of features makes the ecoregion an ideal study area for 
resolving the effect of drought on species in different habitats and 
via different mechanisms. To delineate the study area we used the 
‘Central California Valley’ ecoregion as defined by the USGS (Griffith 
et al., 2016).

2.2  |  Bird count and trait data

eBird is a participatory science birding data repository where volun-
teer observers report checklists comprising counts of bird species de-
tected on discrete sampling occasions (Strimas-Mackey et al., 2020; 
Sullivan et al., 2009, 2014). Reported counts from eBird have been 
used in the past in the Central Valley to inform conservation plan-
ning (Golet et  al., 2018; Reynolds et  al.,  2017) and assess species 
status (Robinson et al., 2020). eBird data are semi-structured, mean-
ing that most checklists are associated with sampling metadata de-
scribing effort. Checklists may also be tagged as ‘complete’ (meaning 
all detected birds were reported, and any non-reported bird was 
not observed). These two features make it possible to model eBird 
counts while partially controlling for sampling variation. However, 
eBird data also contain heterogeneity, especially heterogeneity in 
area sampled, that precludes inferring absolute abundance from 
these data (Goldstein & de Valpine, 2022). We therefore focus our 
interpretations on relative abundance while accounting for variation 
in detection, rather than the absolute abundance of birds.

We analysed eBird checklists in the Central Valley region in 
California, USA (Figure 1a). We extracted all eBird complete checklist 
data for observations that took place in California's Central Valley in 
the years 2010–2019 during the months of April, May and June. This 
date range was selected as a rough approximation of the breeding 
season in this region. From each checklist, we retrieved the following 
metadata: date of year, time of day, duration of sampling event and 
number of observers in the observation group. Any checklist miss-
ing one or more of these metadata was excluded. We also excluded 
checklists other than those that followed the ‘stationary sampling’ pro-
tocol, which specifies that all birds were detected from a single point 
in space, and excluded any checklists with a recorded duration of more 
than 3 hours or with more than eight observers to minimize unmod-
eled heterogeneity and spatial error in the data (Johnston et al., 2021). 
Of 73,853 eBird checklists conducted in the Central Valley during the 
study period, 15,522 eBird checklists met all quality criteria and were 
admitted to analysis. Because each checklist included was ‘complete’, 
each was associated with either a count or a nondetection (count of 0) 
for all species, meaning that all single-species models were fit to ob-
servations from all checklists. We chose to model 66 species that were 
detected on at least 500 (or 3%) of admitted eBird checklists (Table S1).

For each species, we retrieved its trophic niche (i.e., diet cat-
egory) and whether or not it is migratory from AVONET (Tobias 
et al., 2022). We also retrieved each species' taxonomic order and 
grouped species into two groups for comparison (Passerines and 
non-Passerines).

F I G U R E  1 (a) Locations of eBird checklists (black points) in the Central Valley ecoregion (red polygon) of California. Checklists were 
densest near developed areas but distributed throughout the region, with some gaps in the southern Central Valley. (b) Due to increases in 
eBird activity over time, more recent years were better represented in the data set. Bar colours indicate annual average drought as defined 
by the standard precipitation-evapotranspiration index where positive values indicate drier conditions and negative values indicate wetter 
conditions. Our study period comprised two relatively wet periods and two drought periods. (c) Land cover proportions of the entire study 
region (left bar) compared to the areas sampled in the data (right bar). The developed/other category was overrepresented in the data, 
comprising 16% of the Central Valley region but 43% of sampled area.
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2.3  |  Landscape covariate data

Observations were assigned to spatiotemporal cell-year units ac-
cording to a grid of 1 km × 1 km × 1 year covering the Central Valley 
ecoregion over the period 2010–2019. A spatial resolution of 1 km 
was chosen to maximize resolution while allowing eBird checklists 
conducted very nearby one another to be associated. Checklists 
were distributed across a total of 4821 cell-years each containing 
between 1 and 190 checklists (mean = 3.2 checklists; median = 1 
checklist; 90th quantile = 5 checklists; 95th quantile = 10 checklists.).

For each cell, habitat covariates were produced representing the 
proportion of each cell covered by each of six habitat types. Crop 
types were retrieved from the California Statewide Crop Mapping 
data set for 2018. At the time this work was initiated, only cropping 
data for 2016 and 2018 were available, so we opted to use the 2018 
data set only under the expectation that aggregated land use cate-
gories at the 1-km scale were constant during the study period (Of 
Water Resources, C. D, 2020). Gaps in the Statewide Crop Mapping 
data set were filled in with land cover data from the Functional 
Vegetation LANDFIRE data set (LANDFIRE,  2020). Land cover 
classes were aggregated into six categories: row and field crops, pe-
rennial crops, grassland and pasture, natural riparian habitat, other 
natural and semi-natural habitat and developed/other. The ‘devel-
oped/other’ category comprised 91.4% urban habitat.

We retrieved four environmental variables of interest in each 
grid cell: temperature, precipitation, the normalized differential 
water index (NDWI) and the enhanced vegetation index (EVI). We re-
trieved daily precipitation and temperature data from the PRISM cli-
mate group (Hart & Bell, 2015). We computed the average maximum 
daily temperature in the sampling period April–June in each cell-year 
and calculated the amount of precipitation in the preceding year 
(July of the previous year through June of the sampling year). We re-
trieved EVI, an index of vegetative productivity (Justice et al., 1998; 
Vermote & Wolfe,  2023), at 500 m daily resolution and NDWI, a 
measure of the amount of standing water in an area (USGS, 2022), 
at 30 m bi-weekly resolution. For both EVI and NDWI, we computed 
averages within each cell-year during the months April–June.

We used the standardized precipitation-evapotranspiration 
index (SPEI) as a continuous measure of drought severity. SPEI rep-
resents the effects of both water availability and evaporative de-
mand and is calculated based on remotely sensed temperature and 
precipitation (Beguería et al., 2010). The standardized precipitation-
evapotranspiration index has been used in previous studies of birds 
to quantify drought (Cady et al., 2019; Iknayan & Beissinger, 2018). 
We obtained monthly measures of SPEI from the global SPEI data-
base at 1◦ resolution (roughly 85 km in central California), which are 
derived from monthly temperature and precipitation averages at 
that scale (Beguería, 2022). We interpret SPEI as a regional mea-
sure of drought. For each cell-year, we extracted SPEI on April 1, the 
beginning of the sampling period for that year. However, we do not 
use multiple measures of preceding drought or an average over the 
previous period to avoid making an assumption about the duration 
of drought impacts. We investigate potential longer-term and lagged 

effects separately (see section ‘N-mixture models for bird counts’). 
The standardized precipitation-evapotranspiration index is parame-
terized such that lower SPEI indicates drier conditions, so a positive 
effect of SPEI on occupancy means a negative effect of drought on 
occupancy. We selected two levels of SPEI to represent a typical wet 
year and a typical extremely dry year in this system based on the 
lowest and highest median annual SPEI (in 2014 and 2017, respec-
tively). These two representative levels were used to predict envi-
ronmental conditions and bird abundance in a characteristic drought 
and non-drought year.

2.4  |  Predicting bird abundance in 
drought and non-drought conditions

2.4.1  |  Overview of two-stage model framework

Our primary objective was to understand how the abundance of 
66 Central Valley bird species changed between non-drought and 
drought conditions, which we accomplished with a novel two-stage 
model framework (Figure  2). To estimate how bird counts varied 
with various habitat and environmental covariates we developed 
single-species N-mixture models (Dénes et  al., 2015). Rather than 
including a single drought index, we estimated the effects of four 
environmental variables that collectively represent the local condi-
tions hypothesized to influence bird abundance. This allowed us to 
differentiate between correlated but distinct pathways of drought 
impacts, and to estimate complexity in these relationships in the 
form of habitat–environment interactions. In the imperfect detec-
tion submodel, we accounted for variation in eBird sampling, non-
independence between checklists, and overdispersion in the data.

Generating predictions under drought and non-drought condi-
tions required selecting representative levels of each environmental 
variable in each grid cell. To choose these representative levels, we 
developed a set of linear mixed models to explore the relationship 
between overall drought (as represented by SPEI) and each variable 
in each habitat type. From these models, we predicted site-specific 
environmental conditions under representative levels of SPEI. We 
then used these predicted distributions as inputs to predict from N-
mixture models of bird counts, propagating uncertainty. Ultimately, 
this method yielded predictions of bird abundance corresponding to 
specific drought levels while accommodating the multidimension-
ality of drought events. We interpret these predictions to ask how 
birds' abundances changed overall during drought (Q1), how their 
relative habitat use changed (Q2), and whether abundance changes 
were attributable to particular dimensions of drought (Q3).

2.4.2  |  N-mixture models for bird counts

We analysed eBird reported counts using single-species N-mixture 
models (Royle, 2004). Since N-mixture models are somewhat sensi-
tive to unmodeled variation in counts (Link et al., 2018), and since 
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eBird data are sampled heterogeneously, we accounted for two lay-
ers of potential overdispersion with a beta-binomial detection sub-
model and a negative binomial abundance submodel and included 
two types of random effects. The N-mixture models were defined as

The datum yijt is the observed count of the species for the jth 
checklist submitted in grid cell i  and year t. These counts follow a 
beta-binomial distribution with size Nit, a cell-year-level latent vari-
able representing the expected count under perfect detection; 
probability pijt, the detection probability of each individual on the 
jth observation event at grid cell i , year t; and overdispersion pa-
rameter �1 to account for extra-binomial variation in counts within 
a cell-year due to unobserved heterogeneity. Nit follows a negative 
binomial distribution with expected value �it representing the mean 
abundance in grid cell i  in year t and overdispersion parameter �2 
representing extra-Poisson variation in underlying counts across 

cell-years (parameterized such that the variance of the negative bi-
nomial distribution is �it + �2�

2
it
). The values �it and pijt are log- and 

logit-linear functions of checklist-level and cell-year-level covariates 
xijt and w it, respectively, with corresponding coefficient vectors � 
and �. We include a random effect of grid cell, �i, on abundance to 
account for potential nonindependence between counts in each grid 
cell in different years. A random effect of observer (grouping check-
lists submitted by the same eBird user), �o(ijt), on detection is also 
included, where o(ijt) gives the observer ID for the jth checklist sub-
mitted in grid cell i  and year t. Each of the random effects is normally 
distributed with standard deviation parameters ��i

 and ��o
.

The following checklist-level covariates were included in the 
detection submodel (as xijt) to account for variation in effort and 
detectability: sampling duration, time of day, time of day squared, 
day of year, day of year squared and number of observers in group. 
Maximum daily temperature as retrieved from PRISM was also in-
cluded because birds vocalize differently depending on temperature 
(McGrann & Furnas, 2016).

Ten cell-year-level covariates were included in the abundance 
submodel (as w it): latitude; categorical effect of year (nine levels); 
habitat type percentages (0–1 values for each of perennial agricul-
ture, row and field agriculture, grassland, riparian, and other natural 
habitat); and four continuous environmental variables (EVI, NDWI, 

yijt ∣Nit∼BetaBinomial
(

Nit, pijt , �1
)

Nit∼NegativeBinomial
(

�it, �2
)

logit
(

pijt
)

=xijt�+�o(ijt)

log
(

�it
)

=w it�+�i

�o(ijt) ∼
(

0, ��o

)

�i ∼
(

0, ��i

)

F I G U R E  2 A conceptual diagram illustrating relationships between variables in the model. Linear mixed models (LMMs), delineated by the 
dotted grey box, were used to explore how four environmental variables (NDWI, EVI, maximum temperature, annual precipitation) changed 
with change in a drought index differently in different habitat types. Posterior predictions of the four environmental variables under drought 
and non-drought conditions were generated with linear mixed models. N-mixture models were used to estimate the effect of covariates on 
eBird counts, and included two random effects and two layers of possible overdispersion. Posterior predictions of environmental variables 
from LMMs were then used as input data to predict posterior distributions of bird counts under drought and non-drought conditions.

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13827, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 14  |     GOLDSTEIN et al.

average daily temperature, and annual precipitation). We also in-
cluded 20 pairwise interactions between each habitat variable and 
each climate variable and an interaction between wetness (NDWI) 
and average daily maximum temperature. We identified collinearity 
between EVI and NDWI (correlation of 0.74) and between some EVI 
and NDWI interaction terms (3 of 5 pairs EVI and NDWI interac-
tion terms showed correlation >0.7). In the context of the Bayesian 
posterior predictive method used throughout, we judged that col-
linearity between variables would not inhibit predicting changes in 
overall abundance, so we retained both EVI and NDWI in the model. 
A model with explicit spatiotemporal dynamics, allowing for density-
dependent abundance changes, was beyond the scope of our study 
for a few reasons. Separating demography from movement is not 
feasible with eBird data, 10 years is a short period for estimating 
time series effects, and such a model would introduce computa-
tional challenges. We therefore limited our approach to predicting 
bird abundances under drought and non-drought conditions based 
on simple year-to-year differences.

eBird data arise from a nonrandom sampling process driven 
by observer behaviour (Johnston et al., 2021). We attempt to mit-
igate bias in estimates of drought effects via model-based infer-
ence, explicitly modelling variation in the sampling process (Cressie 
et al., 2009). By including observer-level random effects to accom-
modate differences in sampling as the observer pool turns over 
(Johnston et al., 2022), as well as site-level random effects on abun-
dance, and a number of meaningful effort and habitat covariates, we 
are able to estimate the effects of drought and habitat on abundance 
in the presence of heterogeneous sampling. In addition to model-
based inference approaches, we apply data filtering to standardize 
the checklists modelled. By only including stationary point counts, 
we eliminate the possibility that birders track birds while conducting 
their checklists. Bias in estimated drought impacts may still arise if 
eBird observers choose sites with higher counts of birds within grid 
cells in a way that is drought-correlated (i.e., if eBird observers seek 
out bird-rich microsites during non-drought periods, but do not ex-
hibit this preferential sampling during droughts) and if this behaviour 
is not represented in effort metadata or observer identity. An in-
teraction between drought and observer behaviour is impossible to 
check with the data. However, we believe that the many steps taken 
to mitigate the impact of unmeasured variation, including data filter-
ing, multiple measures of effort, and random effects, have minimized 
the impact of observer behaviour on the results we report.

All covariates in both submodels were centered and scaled.
We expected that drought impacts on abundance would coin-

cide with the drought events themselves. Since it is possible that 
ecological drought leads to worse breeding outcomes and reduced 
populations after the drought event has concluded, the impact of 
drought on abundance may occur on a delay. To test whether pre-
dicted changes in abundance were robust to the choice to use year-of 
environmental variables, we replicated the N-mixture modelling and 
posterior predictive steps for all species with one year lags for the 
drought index and four drought-related environmental variables (see 
Supplemental Materials for full details).

We implemented single-species N-mixture models in NIMBLE 
v0.12.2 (De Valpine et al., 2017). We chose all priors to be minimally 
informative on their relevant scales (Northrup & Gerber, 2018). For 
the detection intercept �0, we used a logistic prior. For all other coef-
ficients in b and g, we used normal priors with mean 0 and standard 
deviation 2.25. For both random effect standard deviation priors, 
we used uniform distributions from 0.001 to 10. For priors on beta-
binomial and negative binomial overdisperion parameters, we used 
uniform distributions from 0.0001 to 25. Models were estimated 
with MCMC using custom sampler assignments for improved mix-
ing. For each species, we ran three chains of 15,000 iterations with 
5000 iterations of burn-in and a thinning interval of 10. We checked 
whether each model had a minimum effective sample size of 100 for 
all stochastic parameters, and ran additional chains for each species 
until this condition was met.

2.4.3  |  Linear mixed models of 
environmental covariates

To predict the impact of drought on each species' abundance, we 
needed to understand how each of the four drought-related envi-
ronmental variables (EVI, NDWI, average daily temperature, and an-
nual precipitation) vary between a typical drought and non-drought 
year, for different habitat types. We assessed how SPEI, an accepted 
index of drought, predicted several environmental variables in each 
habitat type, treating SPEI as a predictor variable in the context of 
the larger model framework. After using SPEI to predict each vari-
able, we could then generate posterior predictions of each environ-
mental variables for a given location in the study area under a typical 
dry or wet year.

We used explanatory linear mixed models (LMMs) to estimate 
how each of the four climate covariates varied with SPEI. For a given 
climate variable C, we fit LMMs defined by the equations

where the value of the climate variable at cell i  in year t, Cit, was nor-
mally distributed with mean �it and residual variation �ϵ. The mean 
climate variable at each cell-year �it was a linear combination of covari-
ates xit with coefficients �c. Covariates included were SPEI, five habi-
tat types (as in N-mixture models), and interactions between SPEI and 
each habitat type. We included a normally distributed additive random 
effect of grid cell, �i. All covariates were centered and scaled. Data for 
the years 2010–2019 for all 2566 grid cells containing eBird data were 
included.

Linear mixed models were estimated with the R package ‘brms’ 
(Bürkner, 2017). We used normal priors with mean 0 and standard 
deviation 5 for all � covariates, and half-Cauchy priors with scale pa-
rameter 2 for the prior on ��. We ran three chains of 15,000 itera-
tions with 5000 iterations of burn-in. We then obtained posterior 

Cit∼
(

�it, ��

)

�it=�0+xit�c+�i

�i ∼
(

0, ��

)
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predictions of each climate variable at each cell-year in the study 
area using actual habitat values and the two reference levels of SPEI, 
representing a distribution of potential climate conditions under 
drought and non-drought scenarios.

Parameter estimates from linear mixed models are presented 
and interpreted in the Supplemental Materials.

2.4.4  |  Question 1: Do species' overall counts 
change with drought?

We combined the N-mixture models and LMMs in a joint posterior pre-
dictive framework to estimate changes in bird counts during drought 
(Figure  2). Using predicted levels of environmental variables from 
LMMs and posterior samples of abundance coefficients from single-
species N-mixture models, we computed an expected abundance �i for 
each species at each cell-year in each MCMC iteration. We drew ran-
dom negative binomial counts using these expected abundances and 
draws of the overdispersion parameter, �2, ultimately yielding posterior 
predictive distributions of underlying counts of each species in both 
drought and non-drought conditions. To evaluate whether each spe-
cies declined or increased during drought, we predicted the difference 
in overall count (summed across cell-years) between representative 
drought and non-drought conditions at each iteration for each species. 
If the 95% credible interval of this distribution did not overlap zero, we 
interpreted this as evidence that the species had either a positive or 
negative association between drought and reported counts. We used 
chi-squared tests to ask whether changes in species counts were as-
sociated with trophic niche, whether or not a species is migratory, and 
taxonomic group (comparing Passerines and non-Passerines). We cor-
rected p-values obtained from chi-squared tests across both Question 
1 and Question 2 by controlling the false discovery rate (Benjamini & 
Hochberg, 1995).

2.4.5  |  Question 2: Do species' habitat associations 
change during drought?

Whether species' habitat associations—their predicted relative abun-
dance in each habitat type—varied between drought and non-drought 
conditions was a major question of this study. In a linear modelling 
context, the question ‘does the effect of covariate 1 on the response 
variable change with the level of covariate 2?’ can be represented by 
including an interaction term and testing whether that term is different 
from zero. In the two-stage model presented above, we estimate an 
interaction effect of drought and habitat on the four climate variables 
and an interaction effect of those climate variables with habitat on bird 
counts. This structure creates multiple pathways through the model by 
which both habitat and drought can influence abundance and multiple 
opportunities for interaction effects to occur (Figure 2). This means 
that a simple interaction term is not estimated. However, we can use 
partial derivatives to analytically derive the quantity the interaction 
term represents—the rate of change of the effect of covariate 1 on the 

response variable with respect to covariate 2—in our two-stage model. 
We estimate an interaction between drought and each habitat type 
term for each species. This interaction represents how the effect of 
drought on species' abundances varied across habitat types. Because 
habitat composition is represented as the percent of each of six habi-
tat types, we can calculate six such interaction terms for each species, 
one per habitat. We computed posterior predictive distributions of the 
derived interaction terms for each species-habitat type combination. 
If the 95% CI of the posterior distribution of the interaction term be-
tween drought and one or more habitat variable did not overlap zero, 
we interpreted that as evidence that the species shifted its overall use 
of habitat types during drought.

Please see the Supplemental Materials Section S1 for an in-depth 
discussion of this method. A posteriori, we developed a summary 
generalized linear model to characterize whether species' tolerance 
for developed habitat in non-drought periods explained habitat 
shifts, which we present in Supplemental Materials Section S6.

2.4.6 | Question 3: Are species' changes with drought 
attributable to changes in environmental variables?

To estimate the effect of each climate variable's change during drought 
on the count of each species, we adapted the counterfactual count 
generation workflow. To understand the impact of each climate vari-
able in isolation, we instead predicted counterfactual counts with only 
one climate variable drawn from predictions in drought conditions, 
while the others were predicted in non-drought conditions. By com-
paring these new count distributions with counts under non-drought 
conditions, we were able to identify the amount of change in each spe-
cies' abundance attributable to change in each climate variable. We 
refer to these tests as ‘one-variable counterfactual scenarios’.

If the 95% credible interval of the difference in predicted count 
between each one-variable counterfactual scenario and the non-
drought baseline scenario did not overlap zero, we interpreted this 
as evidence of that variable's importance in driving the species' over-
all abundance during drought.

Figures 1, 3, and 4 were created using the R packages ggplot2 
v3.3.6, ggtern, and urbnmapr (Hamilton & Ferry,  2018; Strochak 
et al., 2022; Wickham, 2016). MCMC samples were processed using 
the package MCMCvis (Youngflesh, 2018).

3  |  RESULTS

3.1  |  Summary of eBird coverage

More recent years are represented by more checklists in the data 
than years further into the past, mirroring trends in eBird usage 
overall (Sullivan et al., 2014) (Figure 1). This weakens our ability to 
identify trends in time relative to early (low-information) years, but 
recent years contain both wet and dry conditions, so inference on 
drought effects should be robust to this pattern. Coverage of habitat 
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types was comparable to the distribution of habitat types across the 
landscape, with the major exception that developed habitats were 
strongly overrepresented. We explicitly estimate habitat-specific 
abundances and drought effects on bird abundance using covariates 
at various points in the model, so we do not assume that sampling 
across habitat types is representative. However, this oversampling 
could mean that the effect of developed habitat types on species 
abundance may be better informed than that of other habitat types.

3.2  |  Do species' overall counts vary during 
drought?

We estimated posterior distributions of the change in overall abun-
dance of each of 66 bird species between drought and non-drought 
conditions. Of these, 22 species had 95% credible intervals of 
change in abundance that did not overlap zero. We infer that counts 
of six species increased during drought, while counts of 16 species 
decreased (Figure 3).

Chi-squared tests indicated that there was no evidence of asso-
ciations between species traits (i.e., foraging guild and body size) or 
taxonomic group (Passerines vs. non-Passerines) and whether the 
species' overall abundance changed during drought (see Figure S2).

To test whether year-of drought effects were appropriate, we 
replicated the models including drought variables on a one-year 
lag (Supplementary Materials  S1). Results of these models were 
nearly identical to results produced by the main year-of models (see 
Figure S5). Under these models, 15 species decreased and five in-
creased their overall abundance, with all but two species effects 
being the same direction as in the primary models. This suggested 
that the choice to use year-of models did not obfuscate a lagged 

effect of drought, and we proceed with interpreting year-of model 
results.

3.3  |  Do species' habitat associations change 
during drought?

We estimated posterior distributions of interaction terms repre-
senting how abundance changed differently for each species in 
each of five habitats during drought. Across 66 species, 27 species 
had one or more credibly nonzero interaction terms. We infer that 
associations between counts of those species and habitat type 
changed with drought level, suggesting that species used habitat 
types in different proportion during drought. We did not identify 
patterns in habitat shifts with taxonomy or any functional traits. 
We provide a table indicating which species were associated with 
statistically clear habitat shifts in the Supplemental Materials 
(Table S6).

To characterize multispecies patterns in habitat–drought re-
lationships, we visualize how the proportion of each species in 
each habitat shifts between drought and non-drought conditions 
(Figure  4). Across the 27 species with habitat shifts, chi-squared 
tests indicated that birds were more likely to increase than de-
cline in developed habitat (25/27 species increased use; adjusted 
p-value < 0.001) and in perennial agricultural habitat (21/27 spe-
cies increased use; adjusted p-value < 0.05). Relative increases in 
use of perennial agriculture and developed habitats were offset by 
decreases in the other four habitat types. More species declined 
than increased use of riparian habitat (19/27 decreased) and other 
natural habitat (17/27 decreased), but chi-squared tests did not in-
dicate that these patterns were statistically different from an even 

F I G U R E  3 Summary of shifts in overall abundance by species. (a) Counts indicating the rate at which species decreased, increased, or 
showed no relationship between overall abundance and drought. 16 species declined in abundance with drought, 6 increased, and the 
remaining 44 species showed no relationship between overall abundance and drought. (b) Percent change in abundance with 95% credible 
intervals for 22 species with credibly nonzero relationships between overall abundance and drought. See Figure S1 for a plot including 
species for which we detected no overall change in abundance.

(a) (b)
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    |  9 of 14GOLDSTEIN et al.

pattern of increases and decreases after controlling for false detec-
tion. Grassland and row and field agricultural habitats also showed a 
roughly even mix of increases and declines in use (11/27 and 12/27 
species declined, respectively).

Chi-squared tests indicated that there was no evidence of asso-
ciations between species traits or taxonomic group (Passerines vs. 
non-Passerines) and whether the species changed its relative use of 
habitat types during drought (see Figure S3).

Finally, we investigated the possibility that species already affil-
iated with human-modified habitats were more likely to shift their 
habitat affiliations to increasingly utilize developed areas and pe-
rennial agriculture during drought. We did not find an association 
between species' non-drought use of developed habitat and the 
probability of habitat shifts (see Supplemental Section S5). We note 
that this null result does not represent evidence that such a rela-
tionship does not exist, as it may be the result of limited power aris-
ing from the relatively small number of species (66) and the many 
sources of uncertainty in eBird data.

3.4  |  Are species' changes with drought 
attributable to changes in environmental variables?

Among 16 species that exhibited an overall decline during drought, 
seven declined in a temperature-only one-variable counterfactual 
scenario, and two species declined in a precipitation-only counter-
factual scenario (see Figure S4). Among five species that increased 

overall during drought, three species increased in a temperature-
only and three species increased in a precipitation-only drought 
counterfactual; one species with an overall increase declined in the 
precipitation-only scenario. Additionally, we find very low rates of 
marginal counterfactual difference among species with no over-
all change (four species of 45). No species declined in EVI-only or 
NDWI-only counterfactual scenarios, which is explained by the find-
ing in the LMM phase that EVI and NDWI did not vary with drought 
to a relevant degree.

We chose a posteriori to predict abundance changes under an 
additional counterfactual scenario where precipitation and tem-
perature were both allowed to vary with drought, but EVI and NDWI 
were not. Under this scenario, 15 species declined in abundance and 
five increased, indicating that the combination of change in tem-
perature and precipitation were jointly responsible for nearly all 
abundance changes predicted by the model.

4  |  DISCUSSION

Birds' responses to drought depend on habitat type. Using a 
novel two-stage modelling framework to analyse eBird data, we 
provide the strongest evidence to date that changes in the rela-
tive importance of habitats may be a more common and immedi-
ate consequence of drought than changes in overall abundance. 
Nearly half of a set of common Central Valley species, including 
many species whose overall abundances did not change during 

F I G U R E  4 Visualizing how 27 species shifted their habitat associations during drought. Only the 27 species that credibly shifted their 
distributions are shown; the 39 species that did not change their relative use of habitat with drought are excluded. (a) A ternary plot shows 
how species shift in three-dimensional habitat space. Each point pair represents one species for which a habitat shift was estimated. 
Habitats have been aggregated into three categories: agriculture (combining perennial and row/field agriculture), natural (riparian, grassland, 
and other natural) and developed. Species overall show shifts away from natural habitat and toward developed and agricultural habitat 
during drought (moving from filled to empty circles, species largely shift up and to the right). (b–g) The shift in use of each species in each 
habitat. Colours indicate whether each species' median posterior predicted proportional use increased or declined in the drought condition. 
We identify a pattern of increase agriculture and developed habitat, while species declined at the greatest rate in riparian and other natural 
habitats. Both plots visualize median posterior predicted proportional habitat use.

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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drought, changed their relative use of habitats during drought. We 
also found that the abundance of a moderate number of species 
declined meaningfully during severe drought, a pattern compara-
ble to that identified in previous research (Mac Nally et al., 2009; 
Nimmo et  al.,  2016; Prugh et  al.,  2018; Selwood et  al.,  2018). 
However, the rate of abundance declines was lower across species 
than the rate of habitat shifts.

In California's Central Valley, birds used human-modified habitat 
more during periods of drought compared to non-drought periods. 
This pattern contrasts with research in other systems indicating that 
natural habitat supports greater biodiversity and promotes resil-
ience during drought (Nimmo et al., 2016). This discrepancy might 
be explained by the intensity and character of human activity in the 
region. The Central Valley is dominated by irrigated agricultural land, 
and the distribution of water between ‘environmental’ applications 
(including river flow, wildlife habitat maintenance, and scenic water-
ways) is highly regulated and varies dramatically between drought 
and non-drought periods. As an illustration, in one characteristic dry 
year, 2014, the allocation of water for environmental use was cut 
to a quarter of its allocation compared to a characteristic wet year, 
2006, while the allocation for agriculture actually increased slightly 
to offset precipitation deficits (Mount & Hanak, 2016). In addition to 
driving short-term changes in relative abundance, changes in water 
availability were a major driver of avian community composition 
change in the Central Valley over the last 100 years, supporting the 
idea that water is a major factor determining species distributions 
(MacLean et al., 2018). However, the effect of water availability on 
bird abundance may be dwarfed by effects of climate change and 
land use change over longer timescales (Beissinger et  al.,  2023). 
Agricultural and developed habitats, which may be less preferable 
for species in normal climate conditions, experience less change in 
water availability due to human intervention compared with natu-
ral landscapes, which may dry entirely as intermittent streams stop 
flowing.

Of the 16 species whose overall abundance declined during 
drought, the yellow-billed magpie experienced the greatest decline. 
The yellow-billed magpie is a species of conservation concern whose 
range is restricted almost entirely to the Central Valley. Yellow-billed 
magpies use developed and perennial agricultural habitats such as 
orchards, where they take advantage of open foraging habitat in 
proximity to large nesting trees (Koenig et al., 2023). This species de-
clined with drought and did not shift its use of habitat, in contrast to 
three other generalist corvids in this study (common raven, American 
crow, and California scrub-jay) that shifted their use of habitat but 
did not decline. This difference suggests that habitat plasticity and 
drought sensitivity are species-specific. For the yellow-billed mag-
pie in particular, we suspect that drought impacts compounded with 
other drivers of recent population decline in yellow-billed magpies, 
including habitat loss and West Nile virus, which limited the spe-
cies' capacity for adaptation and behavioural plasticity. (Crosbie 
et al., 2008; Koenig et al., 2023).

Predicted abundance declines during drought were similar when 
considering effects of drought on a one-year lag, suggesting that 

the year-of model was appropriate. The rapid response by birds is 
more consistent with the hypothesis that observed habitat shifts 
are driven by individuals moving across the landscape as opposed 
to by habitat-dependent mortality gradients, which would be more 
evident over longer timescales. While our use of SPEI as a drought 
index accommodates the possibility that accumulating dryness in the 
environment is responsible for driving changes in bird distributions, 
our model is unable to estimate cumulative effects of steady drought 
on bird populations. Our model ultimately cannot differentiate be-
tween animal movement and mortality gradients. Another limitation 
in this study was the lack of information on annual change in habitat 
type. Over time, turnover in crop types could lead to longer-term 
shifts in bird responses. Similarly, future studies could investigate 
whether annual variation in fallowing on agricultural lands could in-
fluence birds' responses. Interestingly, we did not find greenness to 
be an important influence on bird abundances during drought, sug-
gesting that fallowing may not be an important factor in this system. 
This may be due to the relatively inelastic demand for water in the 
region.

We found that nearly half of overall drought-related species de-
clines in this system were attributable to the extreme temperature 
dimension of drought, and all changes were attributable to a combi-
nation of high temperature and low precipitation. Birds' sensitivity 
to drought is in large part driven by heat stress (Riddell et al., 2019, 
2022), and we predicted few species declines when temperatures 
were normal. The importance of temperature is consistent with the 
fact that species increased their use of perennial agriculture—fruits, 
nuts and vineyards that provide year-round shaded microhabitats in 
the form of vegetative structure—but not row and field crops during 
drought.

Conserving birds in the Central Valley requires balancing the 
needs of wildlife with the reality of extensive human modifica-
tion of the landscape. As extremely high temperatures synergize 
with water deficits to produce abundance declines among birds, 
habitats with stable sources of water and sufficient microrefu-
gia may support the persistence of some sensitive species. Our 
results, which show that species' relative use of developed and 
perennial agricultural habitat is greater during periods of drought, 
indicate that birds are likely already buffering some effects of 
anthropogenic climate change by tracking human-induced gradi-
ents in water availability across suitable habitats. Conservation 
managers can work with this trend by placing a stronger emphasis 
on conservation in working landscapes during drought (Kremen 
& Merenlender, 2018). Agricultural and developmental practices 
that promote biodiversity in the context of human modification, 
such as crop diversity and remnant natural habitat, could have a 
greater proportional effect on birds during drought when modified 
habitats are of greater relative importance (Beillouin et al., 2021; 
Garibaldi et al., 2021; Rich et al., 2017). However, a conservation 
paradigm that ties the persistence of birds during extremely hot, 
dry periods to agricultural and developed land poses potential 
problems. Increasing human-wildlife interactions can expose birds 
to additional stressors such as disturbance, noise, and pollution, 
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which could constitute an ecological trap in which species pre-
fer human-modified habitat despite having worse demographic 
outcomes there (Robertson & Hutto, 2006). Negative impacts on 
human systems must also be considered, such as increased con-
sumption of crops by birds, although birds may also predate pests 
and provide other ecosystem services. A conservation plan that 
emphasizes working lands in this system should focus on mitigat-
ing the impacts of human disturbance on birds and promoting bio-
diversity on human-dominated habitat during drought.

While this study is a step towards a comprehensive picture of 
drought impacts on birds, tailored conservation decision-making 
will require careful observational study of individual systems of 
interest to clarify the extent to which demographic processes and 
species movement separately contribute to changes in relative 
habitat use during drought. We suggest that ecologists emphasize 
interactions between habitat type and drought in future studies 
and experimental interventions. eBird data likely contain observer 
variation, cell variation and overdispersion, all of which we ac-
counted for in the model but which potentially limited our power 
to detect changes in abundance. Higher statistical power may be 
achieved via more targeted sampling in future studies. Because 
this study was restricted to the 66 most commonly detected birds 
in the Central Valley, our ability to identify impacts on rare spe-
cies was limited. eBird data may be insufficient for understanding 
how rare species respond to drought, so ecologists may wish to 
prioritize targeted monitoring of rare species. We note also that 
while the N-mixture approach is an effective way to account for 
between- and within-site variation such as that generated by de-
tection heterogeneity (Royle, 2004), it is possible that additional 
unmeasured variation in the detection process beyond that ac-
counted for with covariates and random effects can introduce 
bias in parameter estimates or lead to misattribution of variation. 
For instance, if eBird observer behaviour differed systematically 
during periods of extreme temperature (as might occur during 
drought) beyond what was accounted for by effort covariates and 
observer-level random effects, we may infer biological relation-
ships from detection-driven variation. We attempted to account 
for observer behaviour throughout the modelling workflow, but it 
is possible that some drought-correlated observational effects are 
present and impossible to disentangle from biological processes.

Our ability to identify changes in bird abundance during drought, 
and isolate those changes to particular environmental variables and 
habitat types, depended on the new model framework presented in 
this manuscript. By hierarchically structuring the impacts of drought 
and habitat on abundance, we were able to estimate parameters 
across a complex set of ecological relationships for a large number of 
species. We propose that joint posterior predictive methodology will 
be a valuable tool for ecologists and environmental scientists seek-
ing to leverage high-volume data sets to understand such systems.

Shifting habitat associations, more than abundance declines, de-
fine birds' responses to drought. Patterns in 10 years of eBird data 
suggest that species respond rapidly to severe drought, and that in-
dividuals are likely able to track gradients of habitat suitability to 

meet temperature and water needs. This pattern is part of a global 
trend of increased human-wildlife interaction driven by climate 
change (Abrahms et al., 2023). When human-induced resource gra-
dients lead species onto agricultural and developed land, conserva-
tion managers must be prepared to follow. Conservation planning 
for such species should adopt a working lands approach that con-
siders species' habitat associations not as fixed properties but as dy-
namic and climate-dependent (Kremen & Merenlender, 2018).
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